Statistical Rethinking course winter 2022

Overview

Statistical Rethinking (2022 Edition)

Instructor: Richard McElreath

Lectures: Uploaded <Playlist> and pre-recorded, two per week

Discussion: Online, Fridays 3pm-4pm Central European Time

Purpose

This course teaches data analysis, but it focuses on scientific models first. The unfortunate truth about data is that nothing much can be done with it, until we say what caused it. We will prioritize conceptual, causal models and precise questions about those models. We will use Bayesian data analysis to connect scientific models to evidence. And we will learn powerful computational tools for coping with high-dimension, imperfect data of the kind that biologists and social scientists face.

Format

Online, flipped instruction. The lectures are pre-recorded. We'll meet online once a week for an hour to work through the solutions to the assigned problems.

We'll use the 2nd edition of my book, <Statistical Rethinking>. I'll provide a PDF of the book to enrolled students.

Registration: Please sign up via <[COURSE IS FULL SORRY]>. I've also set aside 100 audit tickets at the same link, for people who want to participate, but who don't need graded work and course credit.

Calendar & Topical Outline

There are 10 weeks of instruction. Links to lecture recordings will appear in this table. Weekly problem sets are assigned on Fridays and due the next Friday, when we discuss the solutions in the weekly online meeting.

Lecture playlist on Youtube: <Statistical Rethinking 2022>

Week ## Meeting date Reading Lectures
Week 01 07 January Chapters 1, 2 and 3 [1] <The Golem of Prague> <(Slides)>
[2] <Bayesian Inference> <(Slides)>
Week 02 14 January Chapters 4 and 5 [3] <Basic Regression> <(Slides)>
[4] <Categories & Curves> <(Slides)>
Week 03 21 January Chapters 5 and 6 [5] <Elemental Confounds> <(Slides)>
[6] <Good & Bad Controls> <(Slides)>
Week 04 28 January Chapters 7 and 8 [7] Overfitting
[8] Interactions
Week 05 04 February Chapters 9, 10 and 11 [9] Markov chain Monte Carlo
[10] Binomial GLMs
Week 06 11 February Chapters 11 and 12 [11] Poisson GLMs
[12] Ordered Categories
Week 07 18 February Chapter 13 [13] Multilevel Models
[14] Multi-Multilevel Models
Week 08 25 February Chapter 14 [15] Varying Slopes
[16] Gaussian Processes
Week 09 04 March Chapter 15 [17] Measurement Error
[18] Missing Data
Week 10 11 March Chapters 16 and 17 [19] Beyond GLMs: State-space Models, ODEs
[20] Horoscopes

Coding

This course involves a lot of scripting. Students can engage with the material using either the original R code examples or one of several conversions to other computing environments. The conversions are not always exact, but they are rather complete. Each option is listed below.

Original R Flavor

For those who want to use the original R code examples in the print book, you need to install the rethinking R package. The code is all on github https://github.com/rmcelreath/rethinking/ and there are additional details about the package there, including information about using the more-up-to-date cmdstanr instead of rstan as the underlying MCMC engine.

R + Tidyverse + ggplot2 + brms

The <Tidyverse/brms> conversion is very high quality and complete through Chapter 14.

Python and PyMC3

The <Python/PyMC3> conversion is quite complete.

Julia and Turing

The <Julia/Turing> conversion is not as complete, but is growing fast and presents the Rethinking examples in multiple Julia engines, including the great <TuringLang>.

Other

The are several other conversions. See the full list at https://xcelab.net/rm/statistical-rethinking/.

Homework and solutions

I will also post problem sets and solutions. Check the folders at the top of the repository.

Owner
Richard McElreath
Richard McElreath
Show you how to integrate Zeppelin with Airflow

Introduction This repository is to show you how to integrate Zeppelin with Airflow. The philosophy behind the ingtegration is to make the transition f

Jeff Zhang 11 Dec 30, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Hg002-qc-snakemake - HG002 QC Snakemake

HG002 QC Snakemake To Run Resources and data specified within snakefile (hg002QC

Juniper A. Lake 2 Feb 16, 2022
Cleaning and analysing aggregated UK political polling data.

Analysing aggregated UK polling data The tweet collection & storage pipeline used in email-service is used to also collect tweets from @britainelects.

Ajay Pethani 0 Dec 22, 2021
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
ped-crash-techvol: Texas Ped Crash Tech Volume Pack

ped-crash-techvol: Texas Ped Crash Tech Volume Pack In conjunction with the Final Report "Identifying Risk Factors that Lead to Increase in Fatal Pede

Network Modeling Center; Center for Transportation Research; The University of Texas at Austin 2 Sep 28, 2022
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
Single-Cell Analysis in Python. Scales to >1M cells.

Scanpy – Single-Cell Analysis in Python Scanpy is a scalable toolkit for analyzing single-cell gene expression data built jointly with anndata. It inc

Theis Lab 1.4k Jan 05, 2023
Feature Detection Based Template Matching

Feature Detection Based Template Matching The classification of the photos was made using the OpenCv template Matching method. Installation Use the pa

Muhammet Erem 2 Nov 18, 2021
High Dimensional Portfolio Selection with Cardinality Constraints

High-Dimensional Portfolio Selecton with Cardinality Constraints This repo contains code for perform proximal gradient descent to solve sample average

Du Jinhong 2 Mar 22, 2022
pandas: powerful Python data analysis toolkit

pandas is a Python package that provides fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive.

pandas 36.4k Jan 03, 2023
MeSH2Matrix - A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

A set of Python codes for the generation of biomedical ontologies from the MeSH keywords of the PubMed scholarly publications

SisonkeBiotik 6 Nov 30, 2022
A set of procedures that can realize covid19 virus detection based on blood.

A set of procedures that can realize covid19 virus detection based on blood.

Nuyoah-xlh 3 Mar 07, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
Basis Set Format Converter

Basis Set Format Converter Repository for the online tool that allows you to enter a basis set in the form of text input for a variety of Quantum Chem

Manas Sharma 3 Jun 27, 2022
NFCDS Workshop Beginners Guide Bioinformatics Data Analysis

Genomics Workshop FIXME: overview of workshop Code of Conduct All participants s

Elizabeth Brooks 2 Jun 13, 2022
Import, connect and transform data into Excel

xlwings_query Import, connect and transform data into Excel. Description The concept is to apply data transformations to a main query object. When the

George Karakostas 1 Jan 19, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023