The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Overview

Codebase for learning control flow in transformers

The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Paper: https://arxiv.org/abs/2110.07732

Please note that this repository is a cleaned-up version of the internal research repository we use. In case you encounter any problems with it, please don't hesitate to contact me.

Setup

This project requires Python 3 (tested with Python 3.8 and 3.9) and PyTorch 1.8.

pip3 install -r requirements.txt

Create a Weights and Biases account and run

wandb login

More information on setting up Weights and Biases can be found on https://docs.wandb.com/quickstart.

For plotting, LaTeX is required (to avoid Type 3 fonts and to render symbols). Installation is OS specific.

Usage

Running the experiments from the paper on a cluster

The code makes use of Weights and Biases for experiment tracking. In the sweeps directory, we provide sweep configurations for all experiments we have performed. The sweeps are officially meant for hyperparameter optimization, but we use them to run multiple configurations and seeds.

To reproduce our results, start a sweep for each of the YAML files in the sweeps directory. Run wandb agent for each of them in the root directory of the project. This will run all the experiments, and they will be displayed on the W&B dashboard. The name of the sweeps must match the name of the files in sweeps directory, except the .yaml ending. More details on how to run W&B sweeps can be found at https://docs.wandb.com/sweeps/quickstart. If you want to use a Linux cluster to run the experiments, you might find https://github.com/robertcsordas/cluster_tool useful.

For example, if you want to run NDR on compositional table lookup, run wandb sweep --name ctl_ndr sweeps/ctl_ndr.yaml. This creates the sweep and prints out its ID. Then run wandb agent <ID> with that ID.

Re-creating plots from the paper

Edit config file paper/config.json. Enter your project name in the field "wandb_project" (e.g. "username/project").

Run the scripts in the paper directory. For example:

cd paper
./run_all.sh

The output will be generated in the paper/out/ directory. Tables will be printed to stdout in latex format.

If you want to reproduce individual plots, it can be done by running individial python files in the paper directory.

Running experiments locally

It is possible to run single experiments with Tensorboard without using Weights and Biases. This is intended to be used for debugging the code locally.

If you want to run experiments locally, you can use run.py:

./run.py sweeps/ctl_ndr.yaml

If the sweep in question has multiple parameter choices, run.py will interactively prompt choices of each of them.

The experiment also starts a Tensorboard instance automatically on port 7000. If the port is already occupied, it will incrementally search for the next free port.

Note that the plotting scripts work only with Weights and Biases.

Reducing memory usage

In case some tasks won't fit on your GPU, play around with "-max_length_per_batch " argument. It can trade off memory usage/speed by slicing batches and executing them in multiple passes. Reduce it until the model fits.

BibText

@article{csordas2021neural,
      title={The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization}, 
      author={R\'obert Csord\'as and Kazuki Irie and J\"urgen Schmidhuber},
      journal={Preprint arXiv:2110.07732},
      year={2021},
      month={October}
}
Owner
Csordás Róbert
Csordás Róbert
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
A dual benchmarking study of visual forgery and visual forensics techniques

A dual benchmarking study of facial forgery and facial forensics In recent years, visual forgery has reached a level of sophistication that humans can

8 Jul 06, 2022
Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Simple PyTorch implementations of Badnets on MNIST and CIFAR10.

Vera 75 Dec 13, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
A more easy-to-use implementation of KPConv based on PyTorch.

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 36 Dec 29, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
make ASCII Art by Deep Learning

DeepAA This is convolutional neural networks generating ASCII art. This repository is under construction. This work is accepted by NIPS 2017 Workshop,

OsciiArt 1.4k Dec 28, 2022
Google Landmark Recogntion and Retrieval 2021 Solutions

Google Landmark Recogntion and Retrieval 2021 Solutions In this repository you can find solution and code for Google Landmark Recognition 2021 and Goo

Vadim Timakin 5 Nov 25, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
This program was designed to detect whether someone is wearing a facemask through a live video stream.

This program was designed to detect whether someone is wearing a facemask through a live video stream. A custom lightweight CNN trained with TensorFlow on a public dataset provided by Kaggle is used

0 Apr 02, 2022
Official Implementation of "DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization."

DialogLM Code for AAAI 2022 paper: DialogLM: Pre-trained Model for Long Dialogue Understanding and Summarization. Pre-trained Models We release two ve

Microsoft 92 Dec 19, 2022
unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier"

SquarePlus (Pytorch implement) unofficial pytorch implement of "Squareplus: A Softplus-Like Algebraic Rectifier" SquarePlus Squareplus is a Softplus-L

SeeFun 3 Dec 29, 2021
TensorFlow CNN for fast style transfer

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! It takes 100ms on a 2015 Titan X to style t

1 Dec 14, 2021
Contrastive Learning of Structured World Models

Contrastive Learning of Structured World Models This repository contains the official PyTorch implementation of: Contrastive Learning of Structured Wo

Thomas Kipf 371 Jan 06, 2023
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Teaches a student network from the knowledge obtained via training of a larger teacher network

Distilling-the-knowledge-in-neural-network Teaches a student network from the knowledge obtained via training of a larger teacher network This is an i

Abhishek Sinha 146 Dec 11, 2022
Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences"

Syntax-Customized-Video-Captioning Code for the TPAMI paper: "Syntax Customized Video Captioning by Imitating Exemplar Sentences". This is my second w

3 Dec 05, 2022
Stochastic gradient descent with model building

Stochastic Model Building (SMB) This repository includes a new fast and robust stochastic optimization algorithm for training deep learning models. Th

S. Ilker Birbil 22 Jan 19, 2022