gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks.

Overview

Gym-ANM

Documentation Status codecov CI (pip) CI (conda) License: MIT

gym-anm is a framework for designing reinforcement learning (RL) environments that model Active Network Management (ANM) tasks in electricity distribution networks. It is built on top of the OpenAI Gym toolkit.

The gym-anm framework was designed with one goal in mind: bridge the gap between research in RL and in the management of power systems. We attempt to do this by providing RL researchers with an easy-to-work-with library of environments that model decision-making tasks in power grids.

Papers:

Key features

  • Very little background in electricity systems modelling it required. This makes gym-anm an ideal starting point for RL students and researchers looking to enter the field.
  • The environments (tasks) generated by gym-anm follow the OpenAI Gym framework, with which a large part of the RL community is already familiar.
  • The flexibility of gym-anm, with its different customizable components, makes it a suitable framework to model a wide range of ANM tasks, from simple ones that can be used for educational purposes, to complex ones designed to conduct advanced research.

Documentation

Documentation is provided online at https://gym-anm.readthedocs.io/en/latest/.

Installation

Requirements

gym-anm requires Python 3.7+ and can run on Linux, MaxOS, and Windows.

We recommend installing gym-anm in a Python environment (e.g., virtualenv or conda).

Using pip

Using pip (preferably after activating your virtual environment):

pip install gym-anm

Building from source

Alternatively, you can build gym-anm directly from source:

git clone https://github.com/robinhenry/gym-anm.git
cd gym-anm
pip install -e .

Example

The following code snippet illustrates how gym-anm environments can be used. In this example, actions are randomly sampled from the action space of the environment ANM6Easy-v0. For more information about the agent-environment interface, see the official OpenAI Gym documentation.

import gym
import time

env = gym.make('gym_anm:ANM6Easy-v0')
o = env.reset()

for i in range(100):
    a = env.action_space.sample()
    o, r, done, info = env.step(a)
    env.render()
    time.sleep(0.5)  # otherwise the rendering is too fast for the human eye.

The above code would render the environment in your default web browser as shown in the image below: alt text

Additional example scripts can be found in examples/.

Testing the installation

All unit tests in gym-anm can be ran from the project root directory with:

python -m tests

Contributing

Contributions are always welcome! Please read the contribution guidelines first.

Citing the project

All publications derived from the use of gym-anm should cite the following two 2021 papers:

@article{HENRY2021100092,
    title = {Gym-ANM: Reinforcement learning environments for active network management tasks in electricity distribution systems},
    journal = {Energy and AI},
    volume = {5},
    pages = {100092},
    year = {2021},
    issn = {2666-5468},
    doi = {https://doi.org/10.1016/j.egyai.2021.100092},
    author = {Robin Henry and Damien Ernst},
}
@article{HENRY2021100092,
    title = {Gym-ANM: Open-source software to leverage reinforcement learning for power system management in research and education},
    journal = {Software Impacts},
    volume = {9},
    pages = {100092},
    year = {2021},
    issn = {2665-9638},
    doi = {https://doi.org/10.1016/j.simpa.2021.100092},
    author = {Robin Henry and Damien Ernst}
}

Maintainers

gym-anm is currently maintained by Robin Henry.

License

This project is licensed under the MIT License - see the LICENSE.md file for details.

Comments
  • Rendering Problem on Windows 10

    Rendering Problem on Windows 10

    When running the example 'gym_anm:ANM6Easy-v0' given in the quickstart section there is a problem when rendering the environment. The rendering tab that opens on the browser is blank.

    I am running windows 10 and I tried running the script on a Jupyter Notebook (Python 3.8.5), in Google Collab and in Pycharm (Python 3.9). The error log I am getting is:

     Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 116, in spawn_main
        exitcode = _main(fd, parent_sentinel)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 125, in _main
        prepare(preparation_data)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 236, in prepare
        _fixup_main_from_path(data['init_main_from_path'])
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 287, in _fixup_main_from_path
        main_content = runpy.run_path(main_path,
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 268, in run_path
        return _run_module_code(code, init_globals, run_name,
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 97, in _run_module_code
        _run_code(code, mod_globals, init_globals,
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\runpy.py", line 87, in _run_code
        exec(code, run_globals)
      File "C:\Users\diego\PycharmProjects\thesis\main.py", line 16, in <module>
        env.render()
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\anm6.py", line 92, in render
        self._init_render(specs)
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\anm6.py", line 188, in _init_render
        rendering.start(title, dev_type, ps, qs, branch_rate,
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\rendering\py\rendering.py", line 54, in start
        http_server = HttpServer()
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\rendering\py\servers.py", line 171, in __init__
        self.process = self._start_http_process()
      File "C:\Users\diego\PycharmProjects\thesis\venv\lib\site-packages\gym_anm\envs\anm6_env\rendering\py\servers.py", line 184, in _start_http_process
        service.start()
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\process.py", line 121, in start
        self._popen = self._Popen(self)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\context.py", line 224, in _Popen
        return _default_context.get_context().Process._Popen(process_obj)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\context.py", line 327, in _Popen
        return Popen(process_obj)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\popen_spawn_win32.py", line 45, in __init__
        prep_data = spawn.get_preparation_data(process_obj._name)
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 154, in get_preparation_data
        _check_not_importing_main()
      File "C:\Users\diego\AppData\Local\Programs\Python\Python39\lib\multiprocessing\spawn.py", line 134, in _check_not_importing_main
        raise RuntimeError('''
    RuntimeError: 
            An attempt has been made to start a new process before the
            current process has finished its bootstrapping phase.
    
            This probably means that you are not using fork to start your
            child processes and you have forgotten to use the proper idiom
            in the main module:
    
                if __name__ == '__main__':
                    freeze_support()
                    ...
    
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce an executable.
    
    bug 
    opened by diegofz 2
  • ImportError while running tests

    ImportError while running tests

    When I run the test command: python -m tests I get the following error:

    ======================================================================
    ERROR: test_dcopf_agent (unittest.loader._FailedTest)
    ----------------------------------------------------------------------
    ImportError: Failed to import test module: test_dcopf_agent
    Traceback (most recent call last):
      File "/home/satan/miniconda3/envs/rl-algo-env/lib/python3.7/unittest/loader.py", line 434, in _find_test_path
        module = self._get_module_from_name(name)
      File "/home/satan/miniconda3/envs/rl-algo-env/lib/python3.7/unittest/loader.py", line 375, in _get_module_from_name
        __import__(name)
      File "/home/satan/Torch_Env_List/gym-anm/tests/test_dcopf_agent.py", line 6, in <module>
        from gym_anm import MPCAgent
    ImportError: cannot import name 'MPCAgent' from 'gym_anm' (/home/satan/Torch_Env_List/gym-anm/gym_anm/__init__.py)
    
    
    ----------------------------------------------------------------------
    Ran 82 tests in 10.757s
    
    FAILED (errors=1)
    
    opened by sprakashdash 2
  • AttributeError: 'numpy.random._generator.Generator' object has no attribute 'randint'

    AttributeError: 'numpy.random._generator.Generator' object has no attribute 'randint'

    I am running into the following issue in couple of places. I am fixing it by chaging np_random to np.random and using integers instead of randint. Is that correct?

    File C:\ProgramData\Anaconda3\envs\gym-anm\lib\site-packages\gym_anm\envs\anm6_env\anm6_easy.py:31, in ANM6Easy.init_state(self) 27 n_dev, n_gen, n_des = 7, 2, 1 29 state = np.zeros(2 * n_dev + n_des + n_gen + self.K) ---> 31 t_0 = self.np_random.randint(0, int(24 / self.delta_t)) 32 state[-1] = t_0 34 # Load (P, Q) injections.

    AttributeError: 'numpy.random._generator.Generator' object has no attribute 'randint'

    Line 31 in gym-anm/gym_anm/env/anm6_env/anm6_easy.py:

        def init_state(self):
            n_dev, n_gen, n_des = 7, 2, 1
    
            state = np.zeros(2 * n_dev + n_des + n_gen + self.K)
    
            t_0 = self.np_random.randint(0, int(24 / self.delta_t))
            state[-1] = t_0
    
    opened by sifatron 1
  • Add possibility to model shunt elements in the power grid simulator

    Add possibility to model shunt elements in the power grid simulator

    This issue will track the addition of shunt elements to the power grid simulator, just like MATPOWER and other simulation packages do.

    Background

    Shunt elements were not originally included in gym-anm because we didn't want to over-complicate things for beginners with little experience in power system modeling. However, it seems that the feature would be useful to a number of people.

    Feel free to react to this comment if you would like to see this feature added, too!

    Plan

    The goal is to add the possibility to model shunt elements in the power grid simulator. It will follow the same mathematical representation as used by MATPOWER and others: shunt elements (e.g., capacitors or inductors) will be modeled as a fixed impedance connected to ground at a specific bus.

    More precisely, the modifications should follow equations (3.7) and (3.13) of the MATPOWER official documentation.

    enhancement 
    opened by robinhenry 1
  • Update requirements

    Update requirements

    • Switch to using poetry (documentation)
    • Update CI checks
    • Run black on source code, and add black check to CI checks
    • Add a Release GitHub actions workflow for more easily publish to pypi
    opened by robinhenry 0
  • The scalability of large-scale nodes system

    The scalability of large-scale nodes system

    Based on gym-anm, I built my 118-node system, which had 153 devices, 92 loads and 54 units, but I found that the speed of state initialization was very slow. I'm not sure what went wrong. Could you give me some help?

    opened by Kim-369 0
  • Replace MPCAgent with MPCAgentConstant

    Replace MPCAgent with MPCAgentConstant

    Resolving ImportError by replacing MPCAgent with MPCAgentConstant to run python -m tests. The base class has not implemented forecast() definition, so importing in the init file is showing NotImplementedError()

    opened by sprakashdash 0
  • Rendering Problem (Blank Screen)

    Rendering Problem (Blank Screen)

    I am running the following code:

    import gym
    import time
    
    def run():
        env = gym.make('gym_anm:ANM6Easy-v0')
        o = env.reset()
        
        for i in range(100):
            a = env.action_space.sample()
            o, r, done, info = env.step(a)
            env.render()
            time.sleep(0.5)  # otherwise the rendering is too fast for the human eye.
        env.close()
    
    if __name__ == '__main__':
        run()
    

    I get a blank screen on my browser. Running on both Windows 10 and 11.

    opened by sifatron 1
  • Running speed of large-scale nodes

    Running speed of large-scale nodes

    Based on gym-anm, I built my 118-node system, which had 153 devices, 92 loads and 54 units, but I found that the speed of state initialization was very slow. I'm not sure what went wrong. Could you give me some help?

    opened by Kim-369 1
Releases(1.1.4)
  • 1.1.4(Nov 27, 2022)

  • 1.1.3(Nov 27, 2022)

  • 1.1.2(Nov 27, 2022)

  • 1.1.1(Nov 27, 2022)

  • 1.0.2(Nov 27, 2022)

    What's Changed

    • Replace MPCAgent with MPCAgentConstant by @sprakashdash in https://github.com/robinhenry/gym-anm/pull/2
    • Add if __name__ == ... guards to examples for windows multiprocessing bug by @robinhenry in https://github.com/robinhenry/gym-anm/pull/5

    New Contributors

    • @sprakashdash made their first contribution in https://github.com/robinhenry/gym-anm/pull/2

    Full Changelog: https://github.com/robinhenry/gym-anm/commits/1.0.2

    Source code(tar.gz)
    Source code(zip)
Owner
Robin Henry
Masters student working on the control and optimization of complex systems.
Robin Henry
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Pytorch implementation of RED-SDS (NeurIPS 2021).

Recurrent Explicit Duration Switching Dynamical Systems (RED-SDS) This repository contains a reference implementation of RED-SDS, a non-linear state s

Abdul Fatir 10 Dec 02, 2022
Collections for the lasted paper about multi-view clustering methods (papers, codes)

Multi-View Clustering Papers Collections for the lasted paper about multi-view clustering methods (papers, codes). There also exists some repositories

Andrew Guan 10 Sep 20, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
[TIP 2020] Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion

Multi-Temporal Scene Classification and Scene Change Detection with Correlation based Fusion Code for Multi-Temporal Scene Classification and Scene Ch

Lixiang Ru 33 Dec 12, 2022
Efficiently computes derivatives of numpy code.

Note: Autograd is still being maintained but is no longer actively developed. The main developers (Dougal Maclaurin, David Duvenaud, Matt Johnson, and

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 6.1k Jan 08, 2023
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Malware Analysis Neural Network project.

MalanaNeuralNetwork Description Malware Analysis Neural Network project. Table of Contents Getting Started Requirements Installation Clone Set-Up VENV

2 Nov 13, 2021
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
Thermal Control of Laser Powder Bed Fusion using Deep Reinforcement Learning

This repository is the implementation of the paper "Thermal Control of Laser Powder Bed Fusion Using Deep Reinforcement Learning", linked here. The project makes use of the Deep Reinforcement Library

BaratiLab 11 Dec 27, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble

Wordle RL The aim of this project is to build an AI bot that can play the Wordle game, or more generally Squabble I know there are more deterministic

Aditya Arora 3 Feb 22, 2022