Code for "Universal inference meets random projections: a scalable test for log-concavity"

Overview

How to use this repository

This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test for log-concavity" by Robin Dunn, Larry Wasserman, and Aaditya Ramdas.

Folder contents

  • batch_scripts: Contains SLURM batch scripts to run the simulations. Scripts are labeled by the figure for which their simulations produce data. These scripts run the code in sim_code, using the parameters in sim_params.
  • data: Output of simulations.
  • plot_code: Reads simulation outputs from data and reproduces all figures in the paper. Plots are saved to plots folder.
  • plots: Contains all plots in paper.
  • sim_code: R code to run simulations. Simulation output is saved to data folder.
  • sim_params: Parameters for simulations. Each row contains a single choice of parameters. The scripts in sim_code read in these files, and the scripts in batch_scripts loop through all choices of parameters.

How do I ...

Produce the simulations for a given figure?

In the batch_scripts folder, scripts are labeled by the figure for which they simulate data. Run all batch scripts corresponding to the figure of interest. The allocated run time is estimated from the choice of parameters for which the code has the longest run time. Many scripts will run faster than this time. The files in sim_code each contain progress bars to estimate the remaining run time. You may wish to start running these files outside of a batch submission to understand the run time on your computing system.

Alternatively, to run the code without using a job submission system, click on any .sh file. The Rscript lines can be run on a terminal, replacing $SLURM_ARRAY_TASK_ID with all of the indices in the batch array.

The simulation output will be stored in the data folder, with one dataset per choice of parameters. To combine these datasets into a single dataset (as they currently appear in data), run the code in sim_code/combine_datasets.R.

Example: batch_scripts/fig01_fully_NP_randproj.sh

This script reproduces the universal test simulations for Figure 1. To do this, it runs the R script at sim_code/fig01_fully_NP_randproj.R. It reads in the parameters from sim_params/fig01_fully_NP_randproj_params.csv. There are 30 sets of parameters in total. The results will be stored in the data folder, with names such as fig01_fully_NP_randproj_1.csv, ..., fig01_fully_NP_randproj_30.csv. To combine these files into a single .csv file, run the code at sim_code/combine_datasets.R.

Examine the code for a given simulation?

The R code in sim_code is labeled by the figures for which they simulate data. Click on all files corresponding to a given figure.

Reproduce a figure without rerunning the simulations?

The R scripts in plot_code are labeled by their corresponding plots. They read in the necessary simulated data from the data folder and output the figures to the plots folder.

Owner
Robin Dunn
Principal Statistical Consultant, Novartis PhD in Statistics, Carnegie Mellon, 2021
Robin Dunn
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Learning Neural Network Subspaces

Learning Neural Network Subspaces Welcome to the codebase for Learning Neural Network Subspaces by Mitchell Wortsman, Maxwell Horton, Carlos Guestrin,

Apple 117 Nov 17, 2022
A modular, research-friendly framework for high-performance and inference of sequence models at many scales

T5X T5X is a modular, composable, research-friendly framework for high-performance, configurable, self-service training, evaluation, and inference of

Google Research 1.1k Jan 08, 2023
Activating More Pixels in Image Super-Resolution Transformer

HAT [Paper Link] Activating More Pixels in Image Super-Resolution Transformer Xiangyu Chen, Xintao Wang, Jiantao Zhou and Chao Dong BibTeX @article{ch

XyChen 270 Dec 27, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
A multi-scale unsupervised learning for deformable image registration

A multi-scale unsupervised learning for deformable image registration Shuwei Shao, Zhongcai Pei, Weihai Chen, Wentao Zhu, Xingming Wu and Baochang Zha

ShuweiShao 2 Apr 13, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Xintao 1.4k Dec 25, 2022
Tools for the Cleveland State Human Motion and Control Lab

Introduction This is a collection of tools that are helpful for gait analysis. Some are specific to the needs of the Human Motion and Control Lab at C

CSU Human Motion and Control Lab 88 Dec 16, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
Official Pytorch Implementation of Relational Self-Attention: What's Missing in Attention for Video Understanding

Relational Self-Attention: What's Missing in Attention for Video Understanding This repository is the official implementation of "Relational Self-Atte

mandos 43 Dec 07, 2022
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
📖 Deep Attentional Guided Image Filtering

📖 Deep Attentional Guided Image Filtering [Paper] Zhiwei Zhong, Xianming Liu, Junjun Jiang, Debin Zhao ,Xiangyang Ji Harbin Institute of Technology,

9 Dec 23, 2022