Simulator for FRC 2022 challenge: Rapid React

Related tags

Deep Learningrrsim
Overview

rrsim

Simulator for FRC 2022 challenge: Rapid React

out-1.mp4

Usage

In order to run the simulator use the following:

python3 rrsim.py [config_path]

where config_path is the path to the json configuration (default value is default_configs/config.json).

Configurations

In order to configure game, field and robots, a config JSON file must be created. See default_configs directory for examples of configurations. The following are parameters that can be defined in the configuration:

Per-robot parameters:

Name Type Meaning Example
starting_position Tuple[float, float] Starting position of the robot [1.0, 2.0]
collect_time float Time it takes the robot to collect cargo 3.0
shoot_time float Time it takes the robot to shoot cargo 1.0
velocity float Drive velocity of the robot 5.0
accuracy float Shooting accuracy of the robot 0.95
alliance Enum{RED,BLUE} Alliance of the robot RED

Field parameters:

Name Type Meaning Example
cargo_hub_timeout float Time it takes from the moment cargo enters the hub to the moment it is collectable on the floor 10.0
match_length float Length of the simulation 120.0

Units for the values in the configurations can be seen in the units section.

In addition to the configuration JSON file, a cargo distribution CSV file is required. This file is basically a matrix of integers where every integer represents the probability (relative to the other integers) that a cargo will appear in the 1x1 meter square corresponding to that number in the matrix. A default distribution is supplied in the default_configs directory.

The Simulation

Once a configuration has been created (or selected) and the simulator was ran, A window will pop up which contains the actual simulator. This window consists of two sections. In the top - the field, in which robots are represented by squares and cargo by circles. In the bottom - the scoreboard, which is itself divided into three areas, from left to right - blue score, time since the beginning of the match, red score.

Units

rrsim uses the following units:

Quantity Units
Length/Distance Meters
Time Seconds
Velocity Meters per second

Planned Additions

  • Ability to fast forward the simulation.
  • Configurable cycle types for robots
    • Collect only from one side of the field
    • Play defence
    • Collect two balls at a time
    • Score to low hub
  • Penalty for having many robots in the same place
    • Something like "work 10% slower for every robot in your immediate vicinity".

And here are some additions that are probably too overkill to bother with:

  • Robot path planning
A pre-trained model with multi-exit transformer architecture.

ElasticBERT This repository contains finetuning code and checkpoints for ElasticBERT. Towards Efficient NLP: A Standard Evaluation and A Strong Baseli

fastNLP 48 Dec 14, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
A demonstration of using a live Tensorflow session to create an interactive face-GAN explorer.

Streamlit Demo: The Controllable GAN Face Generator This project highlights Streamlit's new hash_func feature with an app that calls on TensorFlow to

Streamlit 257 Dec 31, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Deep Latent Force Models

Deep Latent Force Models This repository contains a PyTorch implementation of the deep latent force model (DLFM), presented in the paper, Compositiona

Tom McDonald 5 Oct 26, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
Learning to Map Large-scale Sparse Graphs on Memristive Crossbar

Release of AutoGMap:Learning to Map Large-scale Sparse Graphs on Memristive Crossbar For reproduction of our searched model, the Ubuntu OS is recommen

2 Aug 23, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation"

SD-AANet The code is for the paper "A Self-Distillation Embedded Supervised Affinity Attention Model for Few-Shot Segmentation" [arxiv] Overview confi

cv516Buaa 9 Nov 07, 2022
Implementation of the paper "Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning"

Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning This is the implementation of the paper "Self-Promoted Prototype Refinement

Kai Zhu 78 Dec 02, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Home for cuQuantum Python & NVIDIA cuQuantum SDK C++ samples

Welcome to the cuQuantum repository! This public repository contains two sets of files related to the NVIDIA cuQuantum SDK: samples: All C/C++ sample

NVIDIA Corporation 147 Dec 27, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021