Python Library for Signal/Image Data Analysis with Transport Methods

Overview

PyTransKit

Python Transport Based Signal Processing Toolkit

Website and documentation: https://pytranskit.readthedocs.io/

Installation

The library could be installed through pip

pip install pytranskit

Alternately, you could clone/download the repository and add the pytranskit directory to your Python path

import sys
sys.path.append('path/to/pytranskit')

from pytranskit.optrans.continuous.cdt import CDT

Low Level Functions

CDT, SCDT

R-CDT

CLOT

  • Continuous Linear Optimal Transport Transform (CLOT) tutorial [notebook] [nbviewer]

Classification Examples

  • CDT Nearest Subspace (CDT-NS) classifier for 1D data [notebook] [nbviewer]
  • SCDT Nearest Subspace (SCDT-NS) classifier for 1D data [8] [notebook] [nbviewer]
  • Radon-CDT Nearest Subspace (RCDT-NS) classifier for 2D data [4] [notebook] [nbviewer]
  • 3D Radon-CDT Nearest Subspace (3D-RCDT-NS) classifier for 3D data [notebook] [nbviewer]

Estimation Examples

Transport-based Morphometry

  • Transport-based Morphometry to detect and visualize cell phenotype differences [7] [notebook] [nbviewer]

References

  1. The cumulative distribution transform and linear pattern classification, Applied and Computational Harmonic Analysis, November 2018
  2. The Radon Cumulative Distribution Transform and Its Application to Image Classification, IEEE Transactions on Image Processing, December 2015
  3. A continuous linear optimal transport approach for pattern analysis in image datasets, Pattern Recognition, March 2016
  4. Radon cumulative distribution transform subspace modeling for image classification, Journal of Mathematical Imaging and Vision, 2021
  5. Parametric Signal Estimation Using the Cumulative Distribution Transform, IEEE Transactions on Signal Processing, May 2020
  6. The Signed Cumulative Distribution Transform for 1-D Signal Analysis and Classification, ArXiv 2021
  7. Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry, PNAS 2014
  8. Nearest Subspace Search in the Signed Cumulative Distribution Transform Space for 1D Signal Classification, ArXiv 2021

Resources

External website http://imagedatascience.com/transport/

You might also like...
 Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport
Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport

Non-Homogeneous Poisson Process Intensity Modeling and Estimation using Measure Transport This GitHub page provides code for reproducing the results i

Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Universal Probability Distributions with Optimal Transport and Convex Optimization

Sylvester normalizing flows for variational inference Pytorch implementation of Sylvester normalizing flows, based on our paper: Sylvester normalizing

A general and strong 3D object detection codebase that supports more methods, datasets and tools (debugging, recording and analysis).

ALLINONE-Det ALLINONE-Det is a general and strong 3D object detection codebase built on OpenPCDet, which supports more methods, datasets and tools (de

Deep learning (neural network) based remote photoplethysmography: how to extract pulse signal from video using deep learning tools

Deep-rPPG: Camera-based pulse estimation using deep learning tools Deep learning (neural network) based remote photoplethysmography: how to extract pu

The source code of the paper "Understanding Graph Neural Networks from Graph Signal Denoising Perspectives"

GSDN-F and GSDN-EF This repository provides a reference implementation of GSDN-F and GSDN-EF as described in the paper "Understanding Graph Neural Net

Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation".

PixelTransformer Code release for the ICML 2021 paper "PixelTransformer: Sample Conditioned Signal Generation". Project Page Installation Please insta

Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

Comments
  • Problem installing `bluepy` from the repo.

    Problem installing `bluepy` from the repo.

    Problem: for my machine (machine spec mentioned below), installing requirements on this repo, as given in requirements.txt throws the following error.

    error: legacy-install-failure
    
    × Encountered error while trying to install package.
    ╰─> bluepy
    
    note: This is an issue with the package mentioned above, not pip.
    hint: See above for output from the failure.
    

    This error is in context with mention of bluepy in requirements.txt.

    Machine Specs:

    1. miniconda venv for python 3.9.12 running on MacOS Monterey; CPU: Apple M2.
    2. miniconda venv for python 3.10.4 running on Ubuntu Jammy Jellyfish; CPU: AMD Ryzen.

    Interesting Note: I don't find bluepy being directly imported in the code on the master or the CDT-app-gui branch.

    Proposed Solution:

    1. Remove bluepy from requirements.txt

    Note: This is not a problem with installing PyTranskit itself. It installs pretty gracefully through pip.

    opened by Ujjawal-K-Panchal 1
  • Changed filter to filter_name

    Changed filter to filter_name

    In the radoncdt.py file passing the option filter was not working since scikit-image expects the key filter_name.

    Tutorial 2 was failing for this reason.

    opened by giovastabile 0
  • Create a

    Create a "NS" classifier

    Create a "NS" classifier, as an standalone implementation of the nearest subspace classification method. The "RCDT_NS" and "CDT-NS" classifier can be a subclass of this classifier.

    opened by xuwangyin 0
  • Issue when setting forward('rm_edge = True')

    Issue when setting forward('rm_edge = True')

    This possibly just needs an edit to reduce the size of the reference signal array alongside the reduction in size of the signal with removed edges.

    File "\RCDT_Basic_Tests.py", line 115, in <module>
        Irev = rcdt.inverse(Ihat, temp, nlims)
    
      File "\pytranskit\optrans\continuous\radoncdt.py", line 123, in inverse
        return self.apply_inverse_map(transport_map, sig0, x1_range)
    
      File "\pytranskit\optrans\continuous\radoncdt.py", line 235, in apply_inverse_map
        sig1_recon = match_shape2d(sig0, sig1_recon)
    
      File "\pytranskit\optrans\utils\data_utils.py", line 81, in match_shape2d
        raise ValueError("A is bigger than B: "
    
    ValueError: A is bigger than B: (250, 250) vs (248, 248)
    
    opened by TobiasLong 0
Releases(0.1)
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023
This repo provides function call to track multi-objects in videos

Custom Object Tracking Introduction This repo provides function call to track multi-objects in videos with a given trained object detection model and

Jeff Lo 51 Nov 22, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs

Project Learning Multiresolution Matrix Factorization and its Wavelet Networks on Graphs, https://arxiv.org/pdf/2111.01940.pdf. Authors Truong Son Hy

5 Jun 28, 2022
本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。

说明 本项目是一个带有前端界面的垃圾分类项目,加载了训练好的模型参数,模型为efficientnetb4,暂时为40分类问题。 python依赖 tf2.3 、cv2、numpy、pyqt5 pyqt5安装 pip install PyQt5 pip install PyQt5-tools 使用 程

4 May 04, 2022
This is the pytorch implementation for the paper: *Learning Accurate Performance Predictors for Ultrafast Automated Model Compression*, which is in submission to TPAMI

SeerNet This is the pytorch implementation for the paper: Learning Accurate Performance Predictors for Ultrafast Automated Model Compression, which is

3 May 01, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Database Reasoning Over Text project for ACL paper

Database Reasoning over Text This repository contains the code for the Database Reasoning Over Text paper, to appear at ACL2021. Work is performed in

Facebook Research 320 Dec 12, 2022
Python package for Bayesian Machine Learning with scikit-learn API

Python package for Bayesian Machine Learning with scikit-learn API Installing & Upgrading package pip install https://github.com/AmazaspShumik/sklearn

Amazasp Shaumyan 482 Jan 04, 2023
Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021)

Neural-Pull: Learning Signed Distance Functions from Point Clouds by Learning to Pull Space onto Surfaces(ICML 2021) This repository contains the code

149 Dec 15, 2022
"Structure-Augmented Text Representation Learning for Efficient Knowledge Graph Completion"(WWW 2021)

STAR_KGC This repo contains the source code of the paper accepted by WWW'2021. "Structure-Augmented Text Representation Learning for Efficient Knowled

Bo Wang 60 Dec 26, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Cancer-and-Tumor-Detection-Using-Inception-model - In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks, specifically here the Inception model by google.

Cancer-and-Tumor-Detection-Using-Inception-model In this repo i am gonna show you how i did cancer/tumor detection in lungs using deep neural networks

Deepak Nandwani 1 Jan 01, 2022
Toontown House CT Edition

Toontown House: Classic Toontown House Classic source that should just work. ❓ W

Open Source Toontown Servers 5 Jan 09, 2022
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer

CSAW-M This repository contains code for CSAW-M: An Ordinal Classification Dataset for Benchmarking Mammographic Masking of Cancer. Source code for tr

Yue Liu 7 Oct 11, 2022
SberSwap Video Swap base on deep learning

SberSwap Video Swap base on deep learning

Sber AI 431 Jan 03, 2023