Code release for Hu et al. Segmentation from Natural Language Expressions. in ECCV, 2016

Overview

Segmentation from Natural Language Expressions

This repository contains the code for the following paper:

  • R. Hu, M. Rohrbach, T. Darrell, Segmentation from Natural Language Expressions. in ECCV, 2016. (PDF)
@article{hu2016segmentation,
  title={Segmentation from Natural Language Expressions},
  author={Hu, Ronghang and Rohrbach, Marcus and Darrell, Trevor},
  journal={Proceedings of the European Conference on Computer Vision (ECCV)},
  year={2016}
}

Project Page: http://ronghanghu.com/text_objseg

Installation

  1. Install Google TensorFlow (v1.0.0 or higher) following the instructions here.
  2. Download this repository or clone with Git, and then cd into the root directory of the repository.

Demo

  1. Download the trained models:
    exp-referit/tfmodel/download_trained_models.sh.
  2. Run the language-based segmentation model demo in ./demo/text_objseg_demo.ipynb with Jupyter Notebook (IPython Notebook).

Image

Training and evaluation on ReferIt Dataset

Download dataset and VGG network

  1. Download ReferIt dataset:
    exp-referit/referit-dataset/download_referit_dataset.sh.
  2. Download VGG-16 network parameters trained on ImageNET 1000 classes:
    models/convert_caffemodel/params/download_vgg_params.sh.

Training

  1. You may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Build training batches for bounding boxes:
    python exp-referit/build_training_batches_det.py.
  3. Build training batches for segmentation:
    python exp-referit/build_training_batches_seg.py.
  4. Select the GPU you want to use during training:
    export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine.
  5. Train the language-based bounding box localization model:
    python exp-referit/exp_train_referit_det.py $GPU_ID.
  6. Train the low resolution language-based segmentation model (from the previous bounding box localization model):
    python exp-referit/init_referit_seg_lowres_from_det.py && python exp-referit/exp_train_referit_seg_lowres.py $GPU_ID.
  7. Train the high resolution language-based segmentation model (from the previous low resolution segmentation model):
    python exp-referit/init_referit_seg_highres_from_lowres.py && python exp-referit/exp_train_referit_seg_highres.py $GPU_ID.

Alternatively, you may skip the training procedure and download the trained models directly:
exp-referit/tfmodel/download_trained_models.sh.

Evaluation

  1. Select the GPU you want to use during testing: export GPU_ID=<gpu id>. Use 0 for <gpu id> if you only have one GPU on your machine. Also, you may need to add the repository root directory to Python's module path: export PYTHONPATH=.:$PYTHONPATH.
  2. Run evaluation for the high resolution language-based segmentation model:
    python exp-referit/exp_test_referit_seg.py $GPU_ID
    This should reproduce the results in the paper.
  3. You may also evaluate the language-based bounding box localization model:
    python exp-referit/exp_test_referit_det.py $GPU_ID
    The results can be compared to this paper.
Owner
Ronghang Hu
Research Scientist, Facebook AI Research (FAIR)
Ronghang Hu
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
State of the Art Neural Networks for Generative Deep Learning

pyradox-generative State of the Art Neural Networks for Generative Deep Learning Table of Contents pyradox-generative Table of Contents Installation U

Ritvik Rastogi 8 Sep 29, 2022
[CVPR 2019 Oral] Multi-Channel Attention Selection GAN with Cascaded Semantic Guidance for Cross-View Image Translation

SelectionGAN for Guided Image-to-Image Translation CVPR Paper | Extended Paper | Guided-I2I-Translation-Papers Citation If you use this code for your

Hao Tang 424 Dec 02, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022
Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Single Optical Path

Keyhole Imaging Code & Dataset Code associated with the paper "Keyhole Imaging: Non-Line-of-Sight Imaging and Tracking of Moving Objects Along a Singl

Stanford Computational Imaging Lab 20 Feb 03, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
Code for the paper: Adversarial Machine Learning: Bayesian Perspectives

Code for the paper: Adversarial Machine Learning: Bayesian Perspectives This repository contains code for reproducing the experiments in the ** Advers

Roi Naveiro 2 Nov 11, 2022
Development of IP code based on VIPs and AADM

Sparse Implicit Processes In this repository we include the two different versions of the SIP code developed for the article Sparse Implicit Processes

1 Aug 22, 2022
Deep-learning-roadmap - All You Need to Know About Deep Learning - A kick-starter

Deep Learning - All You Need to Know Sponsorship To support maintaining and upgrading this project, please kindly consider Sponsoring the project deve

Instill AI 4.4k Dec 26, 2022
This is an official pytorch implementation of Fast Fourier Convolution.

Fast Fourier Convolution (FFC) for Image Classification This is the official code of Fast Fourier Convolution for image classification on ImageNet. Ma

pkumi 199 Jan 03, 2023
GLIP: Grounded Language-Image Pre-training

GLIP: Grounded Language-Image Pre-training Updates 12/06/2021: GLIP paper on arxiv https://arxiv.org/abs/2112.03857. Code and Model are under internal

Microsoft 862 Jan 01, 2023
Code for the USENIX 2017 paper: kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Blazing fast x86-64 VM kernel fuzzing framework with performant VM reloads for Linux, MacOS an

Chair for Sys­tems Se­cu­ri­ty 541 Nov 27, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Learnable Motion Coherence for Correspondence Pruning

Learnable Motion Coherence for Correspondence Pruning Yuan Liu, Lingjie Liu, Cheng Lin, Zhen Dong, Wenping Wang Project Page Any questions or discussi

liuyuan 41 Nov 30, 2022
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022