A lossless neural compression framework built on top of JAX.

Overview

Kompressor

GitHub

Branch CI Coverage
main (active) Build codecov
main Build codecov
development Build codecov

A neural compression framework built on top of JAX.

Install

setup.py assumes a compatible version of JAX and JAXLib are already installed. Automated build is tested for a cuda:11.1-cudnn8-runtime-ubuntu20.04 environment with jaxlib==0.1.76+cuda11.cudnn82.

git clone https://github.com/rosalindfranklininstitute/kompressor.git
cd kompressor
pip install -e .

# Run tests
python -m pytest --cov=src/kompressor tests/

Install & Run through Docker environment

Docker image for the Kompressor dependencies are provided in the quay.io/rosalindfranklininstitute/kompressor:main Quay.io image.

# Run the container for the Kompressor environment
docker run --rm quay.io/rosalindfranklininstitute/kompressor:main \
    python -m pytest --cov=/usr/local/kompressor/src/kompressor /usr/local/kompressor/tests

Install & Run through Singularity environment

Singularity image for the Kompressor dependencies are provided in the rosalindfranklininstitute/kompressor/kompressor:main cloud.sylabs.io image.

singularity pull library://rosalindfranklininstitute/kompressor/kompressor:main
singularity run kompressor_main.sif \
    python -m pytest --cov=/usr/local/kompressor/src/kompressor /usr/local/kompressor/tests
Comments
  • Refactor map tuples to dicts

    Refactor map tuples to dicts

    Closes #14. Functions which currently return an ordered tuple of maps (lrmap, udmap, cmap, ...) now return keyed dictionaries { 'lrmap': lrmap, 'udmap': udmap, 'cmap': cmap, ... } so that order/usage is explicitly enforced.

    List comprehensions over the tuples now use jax.tree_map and jax.tree_multimap to ensure key safety.

    @GMW99, this will break the current implementation of the Metrics Callback class which iterates over a zip of the hardcoded map names and the maps tuple. This iteration can be replaced by iterating over maps.items() since it is now a dict already.

    enhancement 
    opened by JossWhittle 1
  • Ensure jax.jit static_argnums is refactored to static_argnames

    Ensure jax.jit static_argnums is refactored to static_argnames

    Functions that currently mark static_argnums=(0, 1, 2) should be updated to use the safer static_argnames=('tom', 'dick', 'harry') that is now available.

    enhancement high priority 
    opened by JossWhittle 1
  • Update development examples

    Update development examples

    • Splits docker image into JAX base image and Kompressor dependency and install image
    • JAX image installs JAX from source to ensure correct CUDA / CUDNN versions
    • Adjust setup.py to install dependencies from requirement.txt
    • Refactors a how submodules are imported (within the kom.image submodule. Need to check volumes matches)
    • Add kom.image.data submodule for dealing with tensorflow data pipelines
    • Fixed pooling in the total variation losses (used as metrics in the example notebooks)
    • Move all the encoding/decoding functions for the maps into a kom.mapping submodule
    • Add within-k and run-length metrics to kom.image.metrics for example notebooks
    • Added example notebooks for interacting with the maps and training a basic Haiku compression model
    feature 
    opened by JossWhittle 0
  • Add mapping encode/decode functions for float32 data

    Add mapping encode/decode functions for float32 data

    Will need a bit of thinking to get right. We probably need to consider similar tricks that we used for applying Radix Sort on float32 data to make the compression numerically stable and portable between machines.

    enhancement low priority 
    opened by JossWhittle 0
  • Add mapping encode/decode functions for uint32 data

    Add mapping encode/decode functions for uint32 data

    Some of our data is uint32 volumes.

    Will need to trace through the full compression implementation and make sure intermediate value dtypes are large enough to avoid uint32 overflow when needed.

    enhancement low priority 
    opened by JossWhittle 0
  • Modify core encode decode functions to pass a dict to the prediction function

    Modify core encode decode functions to pass a dict to the prediction function

    Currently the lowres inputs are passed directly to the prediction_fn as the only input.

    • Modify to accept a dict that has at least one key for the lowres input.

    • Provide boolean flag to also pass a positional encoding tensor along with the lowres which the model can use if needed.

    • Chunked encode decode will need to generate the correct chunks of the positional encoding for the current chunk.

    • Model can choose how to use positional encodings.

      • Image case would receive (B, H, W, 2) tensor containing the Y and X coordinates of each pixel in the trailing axis.
      • Volume case would receive (B, D, H, W, 3) tensor containing the Z, Y, and X coordinates of each voxel in the trailing axis.
    enhancement high priority 
    opened by JossWhittle 0
  • Look at decompressing sliced chunks

    Look at decompressing sliced chunks

    Decompress sliced chunk of image or volume without needing to decompress the entire data element.

    • May require applying secondary compression in blocks to avoid needing to decompress the full level maps, only to apply the predictor to the target slice.

    • Instead unpack just the blocks needed for the slice then trim.

    • A kompressor (or stack of) trained to secondary compress the maps from the primary kompressor (or stack of) would be able to naturally handle slice chunked decoding.

      • Could such a secondary compressor be shared between levels? Between multiple kompressors in the primary stack?
    experiment low priority 
    opened by JossWhittle 0
  • Look at compressing timeseries data

    Look at compressing timeseries data

    • Experiment with implementing the 1D case for compressing signals.
    • Video as sequence of 2D frames using the 3D volume code directly.
    • Look at compressing within timestep using information from neighbouring timesteps without actually compressing (dropping frames) the temporal axis.
    experiment low priority 
    opened by JossWhittle 0
Releases(v0.0.0)
Owner
Rosalind Franklin Institute
The Rosalind Franklin Institute is dedicated to transforming life science through interdisciplinary research and technology development
Rosalind Franklin Institute
The personal repository of the work: *DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer*.

DanceNet3D The personal repository of the work: DanceNet3D: Music Based Dance Generation with Parametric Motion Transformer. Dataset and Results Pleas

南嘉Nanga 36 Dec 21, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
Sound Source Localization for AI Grand Challenge 2021

Sound-Source-Localization Sound Source Localization study for AI Grand Challenge 2021 (sponsored by NC Soft Vision Lab) Preparation 1. Place the data-

sanghoon 19 Mar 29, 2022
Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets

Raster Vision is an open source Python framework for building computer vision models on satellite, aerial, and other large imagery sets (including obl

Azavea 1.7k Dec 22, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer Accepted as Poster in BMVC 2021 This is an official implementation in P

Sauradip Nag 14 Dec 09, 2022
Run Effective Large Batch Contrastive Learning on Limited Memory GPU

Gradient Cache Gradient Cache is a simple technique for unlimitedly scaling contrastive learning batch far beyond GPU memory constraint. This means tr

Luyu Gao 198 Dec 29, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

MobileViT RegNet Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TR

Hong-Jia Chen 91 Dec 02, 2022
Pytorch implementation for "Large-Scale Long-Tailed Recognition in an Open World" (CVPR 2019 ORAL)

Large-Scale Long-Tailed Recognition in an Open World [Project] [Paper] [Blog] Overview Open Long-Tailed Recognition (OLTR) is the author's re-implemen

Zhongqi Miao 761 Dec 26, 2022
A curated list of awesome Deep Learning tutorials, projects and communities.

Awesome Deep Learning Table of Contents Books Courses Videos and Lectures Papers Tutorials Researchers Websites Datasets Conferences Frameworks Tools

Christos 20k Jan 05, 2023
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023