Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Related tags

Text Data & NLPDPL
Overview

Dual Path Learning for Domain Adaptation of Semantic Segmentation

Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Accepted by ICCV 2021. Paper

Requirements

  • Pytorch 3.6
  • torch==1.5
  • torchvision==0.6
  • Pillow==7.1.2

Dataset Preparations

For GTA5->Cityscapes scenario, download:

For further evaluation on SYNTHIA->Cityscapes scenario, download:

The folder should be structured as:

|DPL
|—— DPL_master/
|—— CycleGAN_DPL/
|—— data/
│   ├—— Cityscapes/  
|   |   ├—— data/
|   |       ├—— gtFine/
|   |       ├—— leftImg8bit/
│   ├—— GTA5/
|   |   ├—— images/
|   |   ├—— labels/
|   |   ├—— ...
│   ├—— synthia/ 
|   |   ├—— RGB/
|   |   ├—— GT/
|   |   ├—— Depth/
|   |   ├—— ...

Evaluation

Download pre-trained models from Pretrained_Resnet_GTA5 [Google_Drive, BaiduYun(Code:t7t8)] and save the unzipped models in ./DPL_master/DPL_pretrained, download translated target images from DPI2I_City2GTA_Resnet [Google_Drive, BaiduYun(Code:cf5a)] and save the unzipped images in ./DPL_master/DPI2I_images/DPI2I_City2GTA_Resnet/val. Then you can evaluate DPL and DPL-Dual as following:

  • Evaluation of DPL
    cd DPL_master
    python evaluation.py --init-weights ./DPL_pretrained/Resnet_GTA5_DPLst4_T.pth --save path_to_DPL_results/results --log-dir path_to_DPL_results
    
  • Evaluation of DPL-Dual
    python evaluation_DPL.py --data-dir-targetB ./DPI2I_images/DPI2I_City2GTA_Resnet --init-weights_S ./DPL_pretrained/Resnet_GTA5_DPLst4_S.pth --init-weights_T ./DPL_pretrained/Resnet_GTA5_DPLst4_T.pth --save path_to_DPL_dual_results/results --log-dir path_to_DPL_dual_results
    

More pretrained models and translated target images on other settings can be downloaded from:

Training

The training process of DPL consists of two phases: single-path warm-up and DPL training. The training example is given on default setting: GTA5->Cityscapes, DeepLab-V2 with ResNet-101.

Quick start for DPL training

Downlad pretrained 1 and 1 [Google_Drive, BaiduYun(Code: 3ndm)], save 1 to path_to_model_S, save 1 to path_to_model_T, then you can train DPL as following:

  1. Train dual path image generation module.

    cd ../CycleGAN_DPL
    python train.py --dataroot ../data --name dual_path_I2I --A_setroot GTA5/images --B_setroot Cityscapes/leftImg8bit/train --model cycle_diff --lambda_semantic 1 --init_weights_S path_to_model_S --init_weights_T path_to_model_T
    
  2. Generate transferred images with dual path image generation module.

    • Generate transferred GTA5->Cityscapes images.
    python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/GTA5/images --model_suffix A  --results_dir DPI2I_path_to_GTA52cityscapes
    
    • Generate transferred Cityscapes->GTA5 images.
     python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/Cityscapes/leftImg8bit/train --model_suffix B  --results_dir DPI2I_path_to_cityscapes2GTA5/train
     
     python test.py --name dual_path_I2I --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/Cityscapes/leftImg8bit/val --model_suffix B  --results_dir DPI2I_path_to_cityscapes2GTA5/val
    
  3. Train dual path adaptive segmentation module

    3.1. Generate dual path pseudo label.

    cd ../DPL_master
    python DP_SSL.py --save path_to_dual_pseudo_label_stepi --init-weights_S path_to_model_S --init-weights_T path_to_model_T --thresh 0.9 --threshlen 0.3 --data-list-target ./dataset/cityscapes_list/train.txt --set train --data-dir-targetB DPI2I_path_to_cityscapes2GTA5 --alpha 0.5
    

    3.2. Train 1 and 1 with dual path pseudo label respectively.

    python DPL.py --snapshot-dir snapshots/DPL_modelS_step_i --data-dir-target DPI2I_path_to_cityscapes2GTA5 --data-label-folder-target path_to_dual_pseudo_label_stepi --init-weights path_to_model_S --domain S
    
    python DPL.py --snapshot-dir snapshots/DPL_modelT_step_i --data-dir DPI2I_path_to_GTA52cityscapes --data-label-folder-target path_to_dual_pseudo_label_stepi --init-weights path_to_model_T
    

    3.3. Update path_to_model_Swith path to best 1 model, update path_to_model_Twith path to best 1 model, adjust parameter threshenlen to 0.25, then repeat 3.1-3.2 for 3 more rounds.

Single path warm up

If you want to train DPL from the very begining, training example of single path warm up is also provided as below:

Single Path Warm-up

Download 1 trained with labeled source dataset Source_only [Google_Drive, BaiduYun(Code:fjdw)].

  1. Train original cycleGAN (without Dual Path Image Translation).

    cd CycleGAN_DPL
    python train.py --dataroot ../data --name ori_cycle --A_setroot GTA5/images --B_setroot Cityscapes/leftImg8bit/train --model cycle_diff --lambda_semantic 0
    
  2. Generate transferred GTA5->Cityscapes images with original cycleGAN.

    python test.py --name ori_cycle --no_dropout --load_size 1024 --crop_size 1024 --preprocess scale_width --dataroot ../data/GTA5/images --model_suffix A  --results_dir path_to_ori_cycle_GTA52cityscapes
    
  3. Before warm up, pretrain 1 without SSL and restore the best checkpoint in path_to_pretrained_T:

    cd ../DPL_master
    python DPL.py --snapshot-dir snapshots/pretrain_T --init-weights path_to_initialization_S --data-dir path_to_ori_cycle_GTA52cityscapes
    
  4. Warm up 1.

    4.1. Generate labels on source dataset with label correction.

    python SSL_source.py --set train --data-dir path_to_ori_cycle_GTA52cityscapes --init-weights path_to_pretrained_T --threshdelta 0.3 --thresh 0.9 --threshlen 0.65 --save path_to_corrected_label_step1_or_step2 
    

    4.2. Generate pseudo labels on target dataset.

    python SSL.py --set train --data-list-target ./dataset/cityscapes_list/train.txt --init-weights path_to_pretrained_T  --thresh 0.9 --threshlen 0.65 --save path_to_pseudo_label_step1_or_step2 
    

    4.3. Train 1 with label correction.

    python DPL.py --snapshot-dir snapshots/label_corr_step1_or_step2 --data-dir path_to_ori_cycle_GTA52cityscapes --source-ssl True --source-label-dir path_to_corrected_label_step1_or_step2 --data-label-folder-target path_to_pseudo_label_step1_or_step2 --init-weights path_to_pretrained_T          
    

4.4 Update path_to_pretrained_T with path to best model in 4.3, repeat 4.1-4.3 for one more round.

More Experiments

  • For SYNTHIA to Cityscapes scenario, please train DPL with "--source synthia" and change the data path.
  • For training on "FCN-8s with VGG16", please train DPL with "--model VGG".

Citation

If you find our paper and code useful in your research, please consider giving a star and citation.

@inproceedings{cheng2021dual,
  title={Dual Path Learning for Domain Adaptation of Semantic Segmentation},
  author={Cheng, Yiting and Wei, Fangyun and Bao, Jianmin and Chen, Dong and Wen, Fang and Zhang, Wenqiang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={9082--9091},
  year={2021}
}

Acknowledgment

This code is heavily borrowed from BDL.

ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
TruthfulQA: Measuring How Models Imitate Human Falsehoods

TruthfulQA: Measuring How Models Imitate Human Falsehoods

69 Dec 25, 2022
NLP Text Classification

多标签文本分类任务 近年来随着深度学习的发展,模型参数的数量飞速增长。为了训练这些参数,需要更大的数据集来避免过拟合。然而,对于大部分NLP任务来说,构建大规模的标注数据集非常困难(成本过高),特别是对于句法和语义相关的任务。相比之下,大规模的未标注语料库的构建则相对容易。为了利用这些数据,我们可以

Jason 1 Nov 11, 2021
🐍 A hyper-fast Python module for reading/writing JSON data using Rust's serde-json.

A hyper-fast, safe Python module to read and write JSON data. Works as a drop-in replacement for Python's built-in json module. This is alpha software

Matthias 479 Jan 01, 2023
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
Tracking Progress in Natural Language Processing

Repository to track the progress in Natural Language Processing (NLP), including the datasets and the current state-of-the-art for the most common NLP tasks.

Sebastian Ruder 21.2k Dec 30, 2022
Implementation of the Hybrid Perception Block and Dual-Pruned Self-Attention block from the ITTR paper for Image to Image Translation using Transformers

ITTR - Pytorch Implementation of the Hybrid Perception Block (HPB) and Dual-Pruned Self-Attention (DPSA) block from the ITTR paper for Image to Image

Phil Wang 17 Dec 23, 2022
Beyond the Imitation Game collaborative benchmark for enormous language models

BIG-bench 🪑 The Beyond the Imitation Game Benchmark (BIG-bench) will be a collaborative benchmark intended to probe large language models, and extrap

Google 1.3k Jan 01, 2023
Simple python code to fix your combo list by removing any text after a separator or removing duplicate combos

Combo List Fixer A simple python code to fix your combo list by removing any text after a separator or removing duplicate combos Removing any text aft

Hamidreza Dehghan 3 Dec 05, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
DeepPavlov Tutorials

DeepPavlov tutorials DeepPavlov: Sentence Classification with Word Embeddings DeepPavlov: Transfer Learning with BERT. Classification, Tagging, QA, Ze

Neural Networks and Deep Learning lab, MIPT 28 Sep 13, 2022
One Stop Anomaly Shop: Anomaly detection using two-phase approach: (a) pre-labeling using statistics, Natural Language Processing and static rules; (b) anomaly scoring using supervised and unsupervised machine learning.

One Stop Anomaly Shop (OSAS) Quick start guide Step 1: Get/build the docker image Option 1: Use precompiled image (might not reflect latest changes):

Adobe, Inc. 148 Dec 26, 2022
Watson Natural Language Understanding and Knowledge Studio

Material de demonstração dos serviços: Watson Natural Language Understanding e Knowledge Studio Visão Geral: https://www.ibm.com/br-pt/cloud/watson-na

Vanderlei Munhoz 4 Oct 24, 2021
Simple GUI where you can enter an article and get a crisp summarized version.

Text-Summarization-using-TextRank-BART Simple GUI where you can enter an article and get a crisp summarized version. How to run: Clone the repo Instal

Rohit P 4 Sep 28, 2022
A Python package implementing a new model for text classification with visualization tools for Explainable AI :octocat:

A Python package implementing a new model for text classification with visualization tools for Explainable AI 🍣 Online live demos: http://tworld.io/s

Sergio Burdisso 285 Jan 02, 2023
Interpretable Models for NLP using PyTorch

This repo is deprecated. Please find the updated package here. https://github.com/EdGENetworks/anuvada Anuvada: Interpretable Models for NLP using PyT

Sandeep Tammu 19 Dec 17, 2022
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking

pretrain4ir_tutorial NLPIR tutorial: pretrain for IR. pre-train on raw textual corpus, fine-tune on MS MARCO Document Ranking 用作NLPIR实验室, Pre-training

ZYMa 12 Apr 07, 2022
Estimation of the CEFR complexity score of a given word, sentence or text.

NLP-Swedish … allows to estimate CEFR (Common European Framework of References) complexity score of a given word, sentence or text. CEFR scores come f

3 Apr 30, 2022
Line as a Visual Sentence: Context-aware Line Descriptor for Visual Localization

Line as a Visual Sentence with LineTR This repository contains the inference code, pretrained model, and demo scripts of the following paper. It suppo

SungHo Yoon 158 Dec 27, 2022