A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Overview

Sentiment Analysis on Yelp's Dataset

Author: Roberto Sanchez, Talent Path: D1 Group

Docker Deployment:

Deployment of this application can be found here hosted on AWS

Running it locally:

docker pull rsanchez2892/sentiment_analysis_app

Overview

The scope of this capstone is centered around the data processing, exploratory data analysis, and training of a model to predict sentiment on user reviews.

End goal of the model

Business Goals

Create a model to be able to be used in generating sentiment on reviews or comments found in external / internal websites to give insights on how people feel about certain topics.

This could give the company insights not easily available on sites where ratings are required or for internal use to determine sentiment on blogs or comments.

Business Applications

By utilizing this model, the business can use it for the following purposes:

External:

  • Monitoring Brand and Reputation online
  • Product Research

Internal:

  • Customer Support
  • Customer Feedback
  • Employee Satisfaction

Currently method to achieving this is by using outside resources which come at a cost and increases risk for leaking sensitive data to the public. This product will bypass these outside resources and give the company the ability to do it in house.

Model Deployment

Link: Review Analyzer

After running multiple models and comparing accuracy, I found that the LinearSVC model is a viable candidate to be used in production for analyzing reviews of services or food.

Classification Report / Confusion Matrix:

Classification Report

Technology Stack

I have been using these technologies for this project:

  • Jupyter Notebook - Version 6.3.0
    • Used for most of the data processing, EDA, and model training.
  • Python - Version 3.8.8
    • The main language this project will be done in.
  • Scikit-learn - Version 0.24
    • Utilizing metrics reports and certain models.
  • Postgres - Version 13
    • Main database application used to store this data.
  • Flask - Version 1.1.2
    • Main backend technology to host a usable version of this project to the public.
  • GitHub
    • Versioning control and online documentation
  • Heroku
    • Online cloud platform to host this application for public use

Data Processing

This capstone uses the Yelp dataset found on Kaggle which comprises of multiple files:

  • Business Data
  • Check-in Data
  • Review Data
  • Tips Data
  • User Data

Stage 1 - Read in From JSON files into Postgres

Overview

  • Read in JSON files
  • General observations on the features found in each file
  • Modifying feature names to meet Postgres naming convention
  • Normalized the data to prepare for import to Postgres
  • Saved copies of each table as CSV file for backup incase Database goes down
  • Exported data into Postgres

As stated above, Kaggle provided several JSON files with a large amount of data that needed to be stored in a location for easy access and provide a quick way to query data on the fly. As the files were read in Jupyter notebook a general observation was made to the feature names and amount each file contained to see what data I was dealing with along with the types associated with them. The business data contained a strange number of attributes that had to be broken up into separate data frames to be normalized for Postgres.

Stage 2 - Pre-Processing Data

Overview

  • Read in data from Postgres
  • IDing Null Values
  • Removing Sparse features
  • Saved data frame as a pickle to be used in model training

This stage I performed elementary data analysis where I analyze any null values, see the distribution of my ratings and review lengths.

Stage 3 - Cleaning Up Data

Overview

  • Replace contractions with expanded versions
  • Lemmatized text
  • Removed special characters, dates, emails, and URLs
  • Removed stop words
  • Remove non-english text
  • Normalized text

Exploratory Data Analysis

Analyzing Null Values in Dataset

Below is a visualization of the data provided by Kaggle showing which features have "NaN " values. Its is clear that the review ratings (review_stars) and reviews (text) are fully populated. Some of the business attributes are sparse but have enough values to be useful for other things. Note several other features were dropped in the Data Processing since they did not provide any insights for the scope of this project.

Heatmap of several million rows of data.

Looking Closer at the Ratings (review_stars)

This is a sample of 2 million rows from the original 8 million in the dataset. This distribution of ratings has a left skew on it where most of the reviews are 4 to 5 stars.

A bar graph showing the distribution of ratings between 1 to 5. there is a significant amount of 5 stars compared to 1-3 combined.

I simplified the ratings to better categorize the sentiment of the review by grouping 1 and 2 star reviews as 'negative', 3 star review as 'neutral', and 4 and 5 star reviews as 'positive'.

Simplified Barchar showing just the negative, neutral, and positive ratings

Looking Closer at the Reviews (text)

To analyze the text, I've calculated the length of each review in the sample and plotted a distribution graph showing them the number of characters of each review. The statistics were that the median review was approx. 606 characters with a range of 0 through 5000 characters.

Showing a distribution chart of the length of the reviews. Clearly the distribution skews right with a median around 400 characters.

A closer inspection on the range 0 - 2000 we can see that most of the reviews are around this general area.

A zoomed in version of the same distribution chart now focusing on 0 - 2000 characters

In order to produce a viable word cloud, I've had to process all of the text in the sample to remove special characters and stop words from NLTK to produce a viable string to be used in word cloud. Below is a visualization of all of the key words found in the positive reviews.

Created a word cloud from the positive words after cleaning

As expected, words like "perfect", "great", "good", "great place", and "highly recommend" came out on top.

A word cloud showing all the words from the negative reviews

On the negative word cloud, words like "bad", "customer service", "never", "horrible", and "awful" are appearing on the word cloud.

Model Training

Model Selection

model selection flow chart

These four models were chosen to be trained with this data. Each of these models had a pipeline created with TfidfVectorizer.

Model Training

  • Run a StratifiedKFold with a 5 fold split and analyze the average scores and classification reports
    • Get an average accuracy of the model for comparison
  • Create a single model to generate a confusion matrix
  • Test out model on a handful of examples

Below is the average metrics after running 5 fold cross validation on LinearSVC

average metrics for linearSVC model

Testing Model

After the model was trained, I fed it some reviews I found online to test out whether or not the model can properly detect the right sentiment. The following reviews are ordered as "Negative", "Neutral", and "Positive":

new_test_data = [
    "This was the worst place I've ever eaten at. The staff was rude and did not take my order until after i pulled out my wallet.",
    "The food was alright, nothing special about this place. I would recommend going elsewhere.",
    "I had a pleasent time with kimberly at the granny shack. The food was amazing and very family friendly.",
]
res = model.prediction(new_test_data)

Below is the results of the prediction, notice that the neutral review has been labeled as negative. This makes sense since the model has a poor recall for neutral reviews as shown in the classification report.

Results from the prediction

End Notes

There are some improvements to be made such as the follow:

  • Balancing the data
    • This can be seen in the confusion matrix for the candidate models and other models created that the predictions come out more positive than negative or neutral.
    • While having poor scores in the neutral category, the most important features are found in the negative and positive predictions for business applications.
  • Hyper-parametrization improvement
    • Logistic Regression and Multinomial NB models produced models within a reasonable time frame while returning reasonable scores. Random Forrest Classifier and SVM took a significant amount of time to produce just one iteration. In order to produce results from this model StratifiedKFold was not used in these two models. Changing SVM to LinearSVC improved performance dramatically and replaced the SVM model and outperformed Logistic Regression which was the original candidate model.
Owner
Roberto Sanchez
Full Stack Web Developer / Data Science Startup
Roberto Sanchez
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data.

MHtyper is an end-to-end pipeline for recognized the Forensic microhaplotypes in Nanopore sequencing data. It is implemented using Python.

willow 6 Jun 27, 2022
Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingwai

TextCortex - HemingwAI Generate product descriptions, blogs, ads and more using GPT architecture with a single request to TextCortex API a.k.a Hemingw

TextCortex AI 27 Nov 28, 2022
🛸 Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy

spacy-transformers: Use pretrained transformers like BERT, XLNet and GPT-2 in spaCy This package provides spaCy components and architectures to use tr

Explosion 1.2k Jan 08, 2023
leaking paid token generator that was a shit lmao for 100$ haha

Discord-Token-Generator-Leaked leaking paid token generator that was a shit lmao for 100$ he selling it for 100$ wth here the code enjoy don't forget

Keevo 5 Apr 15, 2022
Mednlp - Medical natural language parsing and utility library

Medical natural language parsing and utility library A natural language medical

Paul Landes 3 Aug 24, 2022
Python library to make development of portfolio analysis faster and easier

Trafalgar Python library to make development of portfolio analysis faster and easier Installation 🔥 For the moment, Trafalgar is still in beta develo

Santosh Passoubady 641 Jan 01, 2023
InferSent sentence embeddings

InferSent InferSent is a sentence embeddings method that provides semantic representations for English sentences. It is trained on natural language in

Facebook Research 2.2k Dec 27, 2022
Code-autocomplete, a code completion plugin for Python

Code AutoComplete code-autocomplete, a code completion plugin for Python.

xuming 13 Jan 07, 2023
Translates basic English sentences into the Huna language (hoo-NAH)

huna-translator The Huna Language Translates basic English sentences into the Huna language (hoo-NAH). The Huna constructed language was developed in

Miles Smith 0 Jan 20, 2022
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Code for Editing Factual Knowledge in Language Models

KnowledgeEditor Code for Editing Factual Knowledge in Language Models (https://arxiv.org/abs/2104.08164). @inproceedings{decao2021editing, title={Ed

Nicola De Cao 86 Nov 28, 2022
Tensorflow implementation of paper: Learning to Diagnose with LSTM Recurrent Neural Networks.

Multilabel time series classification with LSTM Tensorflow implementation of model discussed in the following paper: Learning to Diagnose with LSTM Re

Aaqib 552 Nov 28, 2022
使用Mask LM预训练任务来预训练Bert模型。训练垂直领域语料的模型表征,提升下游任务的表现。

Pretrain_Bert_with_MaskLM Info 使用Mask LM预训练任务来预训练Bert模型。 基于pytorch框架,训练关于垂直领域语料的预训练语言模型,目的是提升下游任务的表现。 Pretraining Task Mask Language Model,简称Mask LM,即

Desmond Ng 24 Dec 10, 2022
Hierarchical unsupervised and semi-supervised topic models for sparse count data with CorEx

Anchored CorEx: Hierarchical Topic Modeling with Minimal Domain Knowledge Correlation Explanation (CorEx) is a topic model that yields rich topics tha

Greg Ver Steeg 592 Dec 18, 2022
Application to help find best train itinerary, uses speech to text, has a spam filter to segregate invalid inputs, NLP and Pathfinding algos.

T-IAI-901-MSC2022 - GROUP 18 Gestion de projet Notre travail a été organisé et réparti dans un Trello. https://trello.com/b/X3s2fpPJ/ia-projet Install

1 Feb 05, 2022
EMNLP'2021: Can Language Models be Biomedical Knowledge Bases?

BioLAMA BioLAMA is biomedical factual knowledge triples for probing biomedical LMs. The triples are collected and pre-processed from three sources: CT

DMIS Laboratory - Korea University 41 Nov 18, 2022
SentimentArcs: a large ensemble of dozens of sentiment analysis models to analyze emotion in text over time

SentimentArcs - Emotion in Text An end-to-end pipeline based on Jupyter notebooks to detect, extract, process and anlayze emotion over time in text. E

jon_chun 14 Dec 19, 2022
A natural language modeling framework based on PyTorch

Overview PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapi

Meta Research 6.4k Jan 08, 2023
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022