A machine learning model for analyzing text for user sentiment and determine whether its a positive, neutral, or negative review.

Overview

Sentiment Analysis on Yelp's Dataset

Author: Roberto Sanchez, Talent Path: D1 Group

Docker Deployment:

Deployment of this application can be found here hosted on AWS

Running it locally:

docker pull rsanchez2892/sentiment_analysis_app

Overview

The scope of this capstone is centered around the data processing, exploratory data analysis, and training of a model to predict sentiment on user reviews.

End goal of the model

Business Goals

Create a model to be able to be used in generating sentiment on reviews or comments found in external / internal websites to give insights on how people feel about certain topics.

This could give the company insights not easily available on sites where ratings are required or for internal use to determine sentiment on blogs or comments.

Business Applications

By utilizing this model, the business can use it for the following purposes:

External:

  • Monitoring Brand and Reputation online
  • Product Research

Internal:

  • Customer Support
  • Customer Feedback
  • Employee Satisfaction

Currently method to achieving this is by using outside resources which come at a cost and increases risk for leaking sensitive data to the public. This product will bypass these outside resources and give the company the ability to do it in house.

Model Deployment

Link: Review Analyzer

After running multiple models and comparing accuracy, I found that the LinearSVC model is a viable candidate to be used in production for analyzing reviews of services or food.

Classification Report / Confusion Matrix:

Classification Report

Technology Stack

I have been using these technologies for this project:

  • Jupyter Notebook - Version 6.3.0
    • Used for most of the data processing, EDA, and model training.
  • Python - Version 3.8.8
    • The main language this project will be done in.
  • Scikit-learn - Version 0.24
    • Utilizing metrics reports and certain models.
  • Postgres - Version 13
    • Main database application used to store this data.
  • Flask - Version 1.1.2
    • Main backend technology to host a usable version of this project to the public.
  • GitHub
    • Versioning control and online documentation
  • Heroku
    • Online cloud platform to host this application for public use

Data Processing

This capstone uses the Yelp dataset found on Kaggle which comprises of multiple files:

  • Business Data
  • Check-in Data
  • Review Data
  • Tips Data
  • User Data

Stage 1 - Read in From JSON files into Postgres

Overview

  • Read in JSON files
  • General observations on the features found in each file
  • Modifying feature names to meet Postgres naming convention
  • Normalized the data to prepare for import to Postgres
  • Saved copies of each table as CSV file for backup incase Database goes down
  • Exported data into Postgres

As stated above, Kaggle provided several JSON files with a large amount of data that needed to be stored in a location for easy access and provide a quick way to query data on the fly. As the files were read in Jupyter notebook a general observation was made to the feature names and amount each file contained to see what data I was dealing with along with the types associated with them. The business data contained a strange number of attributes that had to be broken up into separate data frames to be normalized for Postgres.

Stage 2 - Pre-Processing Data

Overview

  • Read in data from Postgres
  • IDing Null Values
  • Removing Sparse features
  • Saved data frame as a pickle to be used in model training

This stage I performed elementary data analysis where I analyze any null values, see the distribution of my ratings and review lengths.

Stage 3 - Cleaning Up Data

Overview

  • Replace contractions with expanded versions
  • Lemmatized text
  • Removed special characters, dates, emails, and URLs
  • Removed stop words
  • Remove non-english text
  • Normalized text

Exploratory Data Analysis

Analyzing Null Values in Dataset

Below is a visualization of the data provided by Kaggle showing which features have "NaN " values. Its is clear that the review ratings (review_stars) and reviews (text) are fully populated. Some of the business attributes are sparse but have enough values to be useful for other things. Note several other features were dropped in the Data Processing since they did not provide any insights for the scope of this project.

Heatmap of several million rows of data.

Looking Closer at the Ratings (review_stars)

This is a sample of 2 million rows from the original 8 million in the dataset. This distribution of ratings has a left skew on it where most of the reviews are 4 to 5 stars.

A bar graph showing the distribution of ratings between 1 to 5. there is a significant amount of 5 stars compared to 1-3 combined.

I simplified the ratings to better categorize the sentiment of the review by grouping 1 and 2 star reviews as 'negative', 3 star review as 'neutral', and 4 and 5 star reviews as 'positive'.

Simplified Barchar showing just the negative, neutral, and positive ratings

Looking Closer at the Reviews (text)

To analyze the text, I've calculated the length of each review in the sample and plotted a distribution graph showing them the number of characters of each review. The statistics were that the median review was approx. 606 characters with a range of 0 through 5000 characters.

Showing a distribution chart of the length of the reviews. Clearly the distribution skews right with a median around 400 characters.

A closer inspection on the range 0 - 2000 we can see that most of the reviews are around this general area.

A zoomed in version of the same distribution chart now focusing on 0 - 2000 characters

In order to produce a viable word cloud, I've had to process all of the text in the sample to remove special characters and stop words from NLTK to produce a viable string to be used in word cloud. Below is a visualization of all of the key words found in the positive reviews.

Created a word cloud from the positive words after cleaning

As expected, words like "perfect", "great", "good", "great place", and "highly recommend" came out on top.

A word cloud showing all the words from the negative reviews

On the negative word cloud, words like "bad", "customer service", "never", "horrible", and "awful" are appearing on the word cloud.

Model Training

Model Selection

model selection flow chart

These four models were chosen to be trained with this data. Each of these models had a pipeline created with TfidfVectorizer.

Model Training

  • Run a StratifiedKFold with a 5 fold split and analyze the average scores and classification reports
    • Get an average accuracy of the model for comparison
  • Create a single model to generate a confusion matrix
  • Test out model on a handful of examples

Below is the average metrics after running 5 fold cross validation on LinearSVC

average metrics for linearSVC model

Testing Model

After the model was trained, I fed it some reviews I found online to test out whether or not the model can properly detect the right sentiment. The following reviews are ordered as "Negative", "Neutral", and "Positive":

new_test_data = [
    "This was the worst place I've ever eaten at. The staff was rude and did not take my order until after i pulled out my wallet.",
    "The food was alright, nothing special about this place. I would recommend going elsewhere.",
    "I had a pleasent time with kimberly at the granny shack. The food was amazing and very family friendly.",
]
res = model.prediction(new_test_data)

Below is the results of the prediction, notice that the neutral review has been labeled as negative. This makes sense since the model has a poor recall for neutral reviews as shown in the classification report.

Results from the prediction

End Notes

There are some improvements to be made such as the follow:

  • Balancing the data
    • This can be seen in the confusion matrix for the candidate models and other models created that the predictions come out more positive than negative or neutral.
    • While having poor scores in the neutral category, the most important features are found in the negative and positive predictions for business applications.
  • Hyper-parametrization improvement
    • Logistic Regression and Multinomial NB models produced models within a reasonable time frame while returning reasonable scores. Random Forrest Classifier and SVM took a significant amount of time to produce just one iteration. In order to produce results from this model StratifiedKFold was not used in these two models. Changing SVM to LinearSVC improved performance dramatically and replaced the SVM model and outperformed Logistic Regression which was the original candidate model.
Owner
Roberto Sanchez
Full Stack Web Developer / Data Science Startup
Roberto Sanchez
Translation for Trilium Notes. Trilium Notes 中文版.

Trilium Translation 中文说明 This repo provides a translation for the awesome Trilium Notes. Currently, I have translated Trilium Notes into Chinese. Test

743 Jan 08, 2023
Prithivida 690 Jan 04, 2023
Chatbot for the Chatango messaging platform

BroiestBot The baddest bot in the game right now. Uses the ch.py framework for joining Chantango rooms and responding to user messages. Commands If a

Todd Birchard 3 Jan 17, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Checking spelling of form elements

Checking spelling of form elements. You can check the source files of external workflows/reports and configuration files

СКБ Контур (команда 1с) 15 Sep 12, 2022
NeurIPS'21: Probabilistic Margins for Instance Reweighting in Adversarial Training (Pytorch implementation).

source code for NeurIPS21 paper robabilistic Margins for Instance Reweighting in Adversarial Training

9 Dec 20, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

Implemented shortest-circuit disambiguation, maximum probability disambiguation, HMM-based lexical annotation and BiLSTM+CRF-based named entity recognition

0 Feb 13, 2022
BookNLP, a natural language processing pipeline for books

BookNLP BookNLP is a natural language processing pipeline that scales to books and other long documents (in English), including: Part-of-speech taggin

654 Jan 02, 2023
Accurately generate all possible forms of an English word e.g "election" --> "elect", "electoral", "electorate" etc.

Accurately generate all possible forms of an English word Word forms can accurately generate all possible forms of an English word. It can conjugate v

Dibya Chakravorty 570 Dec 31, 2022
Stuff related to Ben Eater's 8bit breadboard computer

8bit breadboard computer simulator This is an assembler + simulator/emulator of Ben Eater's 8bit breadboard computer. For a version with its RAM upgra

Marijn van Vliet 29 Dec 29, 2022
The ability of computer software to identify words and phrases in spoken language and convert them to human-readable text

speech-recognition-py Speech recognition is the ability of computer software to identify words and phrases in spoken language and convert them to huma

Deepangshi 1 Apr 03, 2022
Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR

Speech_38_ru_commands Recognition of 38 speech commands in russian. Based on Yandex Cup 2021 ML Challenge: ASR Программа умеет распознавать 38 ключевы

Andrey 9 May 05, 2022
Binaural Speech Synthesis

Binaural Speech Synthesis This repository contains code to train a mono-to-binaural neural sound renderer. If you use this code or the provided datase

Facebook Research 135 Dec 18, 2022
VoiceFixer VoiceFixer is a framework for general speech restoration.

VoiceFixer VoiceFixer is a framework for general speech restoration. We aim at the restoration of severly degraded speech and historical speech. Paper

Leo 174 Jan 06, 2023
Model parallel transformers in JAX and Haiku

Table of contents Mesh Transformer JAX Updates Pretrained Models GPT-J-6B Links Acknowledgments License Model Details Zero-Shot Evaluations Architectu

Ben Wang 4.9k Jan 04, 2023
A Japanese tokenizer based on recurrent neural networks

Nagisa is a python module for Japanese word segmentation/POS-tagging. It is designed to be a simple and easy-to-use tool. This tool has the following

325 Jan 05, 2023
Coreference resolution for English, German and Polish, optimised for limited training data and easily extensible for further languages

Coreferee Author: Richard Paul Hudson, msg systems ag 1. Introduction 1.1 The basic idea 1.2 Getting started 1.2.1 English 1.2.2 German 1.2.3 Polish 1

msg systems ag 169 Dec 21, 2022
CrossNER: Evaluating Cross-Domain Named Entity Recognition (AAAI-2021)

CrossNER is a fully-labeled collected of named entity recognition (NER) data spanning over five diverse domains (Politics, Natural Science, Music, Literature, and Artificial Intelligence) with specia

Zihan Liu 89 Nov 10, 2022