Python module for performing linear regression for data with measurement errors and intrinsic scatter

Overview

Linear regression for data with measurement errors and intrinsic scatter (BCES)

Python module for performing robust linear regression on (X,Y) data points where both X and Y have measurement errors.

The fitting method is the bivariate correlated errors and intrinsic scatter (BCES) and follows the description given in Akritas & Bershady. 1996, ApJ. Some of the advantages of BCES regression compared to ordinary least squares fitting (quoted from Akritas & Bershady 1996):

  • it allows for measurement errors on both variables
  • it permits the measurement errors for the two variables to be dependent
  • it permits the magnitudes of the measurement errors to depend on the measurements
  • other "symmetric" lines such as the bisector and the orthogonal regression can be constructed.

In order to understand how to perform and interpret the regression results, please read the paper.

Installation

Using pip:

pip install bces

If that does not work, you can install it using the setup.py script:

python setup.py install

You may need to run the last command with sudo.

Alternatively, if you plan to modify the source then install the package with a symlink, so that changes to the source files will be immediately available:

python setup.py develop

Usage

import bces.bces as BCES
a,b,aerr,berr,covab=BCES.bcesp(x,xerr,y,yerr,cov)

Arguments:

  • x,y : 1D data arrays
  • xerr,yerr: measurement errors affecting x and y, 1D arrays
  • cov : covariance between the measurement errors, 1D array

If you have no reason to believe that your measurement errors are correlated (which is usually the case), you can provide an array of zeroes as input for cov:

cov = numpy.zeros_like(x)

Output:

  • a,b : best-fit parameters a,b of the linear regression such that y = Ax + B.
  • aerr,berr : the standard deviations in a,b
  • covab : the covariance between a and b (e.g. for plotting confidence bands)

Each element of the arrays a, b, aerr, berr and covab correspond to the result of one of the different BCES lines: y|x, x|y, bissector and orthogonal, as detailed in the table below. Please read the original BCES paper to understand what these different lines mean.

Element Method Description
0 y|x Assumes x as the independent variable
1 x|y Assumes y as the independent variable
2 bissector Line that bisects the y|x and x|y. This approach is self-inconsistent, do not use this method, cf. Hogg, D. et al. 2010, arXiv:1008.4686.
3 orthogonal Orthogonal least squares: line that minimizes orthogonal distances. Should be used when it is not clear which variable should be treated as the independent one

By default, bcesp run in parallel with bootstrapping.

Examples

bces-example.ipynb is a jupyter notebook including a practical, step-by-step example of how to use BCES to perform regression on data with uncertainties on x and y. It also illustrates how to plot the confidence band for a fit.

If you have suggestions of more examples, feel free to add them.

Running Tests

To test your installation, run the following command inside the BCES directory:

pytest -v

Requirements

See requirements.txt.

Citation

If you end up using this code in your paper, you are morally obliged to cite the following works

I spent considerable time writing this code, making sure it is correct and user-friendly, so I would appreciate your citation of the second paper in the above list as a token of gratitude.

If you are really happy with the code, you can buy me a beer.

Misc.

This python module is inspired on the (much faster) fortran routine originally written Akritas et al. I wrote it because I wanted something more portable and easier to use, trading off speed.

For a general tutorial on how to (and how not to) perform linear regression, please read this paper: Hogg, D. et al. 2010, arXiv:1008.4686. In particular, please refrain from using the bisector method.

If you want to plot confidence bands for your fits, have a look at nmmn package (in particular, modules nmmn.plots.fitconf and stats).

Bayesian linear regression

There are a couple of Bayesian approaches to perform linear regression which can be more powerful than BCES, some of which are described below.

A Gibbs Sampler for Multivariate Linear Regression: R code, arXiv:1509.00908. Linear regression in the fairly general case with errors in X and Y, errors may be correlated, intrinsic scatter. The prior distribution of covariates is modeled by a flexible mixture of Gaussians. This is an extension of the very nice work by Brandon Kelly (Kelly, B. 2007, ApJ).

LIRA: A Bayesian approach to linear regression in astronomy: R code, arXiv:1509.05778 Bayesian hierarchical modelling of data with heteroscedastic and possibly correlated measurement errors and intrinsic scatter. The method fully accounts for time evolution. The slope, the normalization, and the intrinsic scatter of the relation can evolve with the redshift. The intrinsic distribution of the independent variable is approximated using a mixture of Gaussian distributions whose means and standard deviations depend on time. The method can address scatter in the measured independent variable (a kind of Eddington bias), selection effects in the response variable (Malmquist bias), and departure from linearity in form of a knee.

AstroML: Machine Learning and Data Mining for Astronomy. Python example of a linear fit to data with correlated errors in x and y using AstroML. In the literature, this is often referred to as total least squares or errors-in-variables fitting.

Todo

If you have improvements to the code, suggestions of examples,speeding up the code etc, feel free to submit a pull request.

  • implement weighted least squares (WLS)
  • implement unit testing: bces
  • unit testing: bootstrap

Visit the author's web page and/or follow him on twitter (@nemmen).


Copyright (c) 2021, Rodrigo Nemmen. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Owner
Rodrigo Nemmen
Professor of Astronomy & Astrophysics
Rodrigo Nemmen
A simple python program that draws a tree for incrementing values using the Collatz Conjecture.

Collatz Conjecture A simple python program that draws a tree for incrementing values using the Collatz Conjecture. Values which can be edited: Length

davidgasinski 1 Oct 28, 2021
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
neurodsp is a collection of approaches for applying digital signal processing to neural time series

neurodsp is a collection of approaches for applying digital signal processing to neural time series, including algorithms that have been proposed for the analysis of neural time series. It also inclu

NeuroDSP 224 Dec 02, 2022
A library to generate synthetic time series data by easy-to-use factors and generator

timeseries-generator This repository consists of a python packages that generates synthetic time series dataset in a generic way (under /timeseries_ge

Nike Inc. 87 Dec 20, 2022
Bottleneck a collection of fast, NaN-aware NumPy array functions written in C.

Bottleneck Bottleneck is a collection of fast, NaN-aware NumPy array functions written in C. As one example, to check if a np.array has any NaNs using

Python for Data 835 Dec 27, 2022
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
机器学习检测webshell

ai-webshell-detect 机器学习检测webshell,利用textcnn+简单二分类网络,基于keras,花了七天 检测原理: 从文件熵 文件长度 文件语句提取出特征,然后文件熵与长度送入二分类网络,文件语句送入textcnn 项目原理,介绍,怎么做出来的

Huoji's 56 Dec 14, 2022
ML Optimizers from scratch using JAX

Toy implementations of some popular ML optimizers using Python/JAX

Shreyansh Singh 38 Jul 29, 2022
A Software Framework for Neuromorphic Computing

A Software Framework for Neuromorphic Computing

Lava 338 Dec 26, 2022
BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models.

Model Serving Made Easy BentoML is a flexible, high-performance framework for serving, managing, and deploying machine learning models. Supports multi

BentoML 4.4k Jan 04, 2023
LightGBM + Optuna: no brainer

AutoLGBM LightGBM + Optuna: no brainer auto train lightgbm directly from CSV files auto tune lightgbm using optuna auto serve best lightgbm model usin

Rishiraj Acharya 22 Dec 15, 2022
Hierarchical Time Series Forecasting using Prophet

htsprophet Hierarchical Time Series Forecasting using Prophet Credit to Rob J. Hyndman and research partners as much of the code was developed with th

Collin Rooney 131 Dec 02, 2022
Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Model Agnostic Confidence Estimator (MACEST) - A Python library for calibrating Machine Learning models' confidence scores

Oracle 95 Dec 28, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
TensorFlow implementation of an arbitrary order Factorization Machine

This is a TensorFlow implementation of an arbitrary order (=2) Factorization Machine based on paper Factorization Machines with libFM. It supports: d

Mikhail Trofimov 785 Dec 21, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
Combines Bayesian analyses from many datasets.

PosteriorStacker Combines Bayesian analyses from many datasets. Introduction Method Tutorial Output plot and files Introduction Fitting a model to a d

Johannes Buchner 19 Feb 13, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Scikit-Learn useful pre-defined Pipelines Hub

Scikit-Pipes Scikit-Learn useful pre-defined Pipelines Hub Usage: Install scikit-pipes It's advised to install sklearn-genetic using a virtual env, in

Rodrigo Arenas 1 Apr 26, 2022