Official PyTorch implementation of Segmenter: Transformer for Semantic Segmentation

Overview

Segmenter: Transformer for Semantic Segmentation

Figure 1 from paper

Segmenter: Transformer for Semantic Segmentation by Robin Strudel*, Ricardo Garcia*, Ivan Laptev and Cordelia Schmid.

*Equal Contribution

Installation

Define os environment variables pointing to your checkpoint and dataset directory, put in your .bashrc:

export DATASET=/path/to/dataset/dir

Install PyTorch 1.9 then pip install . at the root of this repository.

To download ADE20K, use the following command:

python -m segm.scripts.prepare_ade20k $DATASET

Model Zoo

We release models with a Vision Transformer backbone initialized from the improved ViT models.

ADE20K

Segmenter models with ViT backbone:

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-T-Mask/16 38.1 / 38.8 7M 512x512 52.4 model config log
Seg-S-Mask/16 45.3 / 46.9 27M 512x512 34.8 model config log
Seg-B-Mask/16 48.5 / 50.0 106M 512x512 24.1 model config log
Seg-L-Mask/16 51.3 / 53.2 334M 512x512 10.6 model config log
Seg-L-Mask/16 51.8 / 53.6 334M 640x640 - model config log

Segmenter models with DeiT backbone:

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-B/16 47.1 / 48.1 87M 512x512 27.3 model config log
Seg-B-Mask/16 48.7 / 50.1 106M 512x512 24.1 model config log

Pascal Context

Name mIoU (SS/MS) # params Resolution FPS Download
Seg-L-Mask/16 58.1 / 59.0 334M 480x480 - model config log

Inference

Download one checkpoint with its configuration in a common folder, for example seg_tiny_mask.

You can generate segmentation maps from your own data with:

python -m segm.inference --model-path seg_tiny_mask/checkpoint.pth -i images/ -o segmaps/ 

To evaluate on ADE20K, run the command:

# single-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --singlescale
# multi-scale evaluation:
python -m segm.eval.miou seg_tiny_mask/checkpoint.pth ade20k --multiscale

Train

Train Seg-T-Mask/16 on ADE20K on a single GPU:

python -m segm.train --log-dir seg_tiny_mask --dataset ade20k \
  --backbone vit_tiny_patch16_384 --decoder mask_transformer

To train Seg-B-Mask/16, simply set vit_base_patch16_384 as backbone and launch the above command using a minimum of 4 V100 GPUs (~12 minutes per epoch) and up to 8 V100 GPUs (~7 minutes per epoch). The code uses SLURM environment variables.

Logs

To plot the logs of your experiments, you can use

python -m segm.utils.logs logs.yml

with logs.yml located in utils/ with the path to your experiments logs:

root: /path/to/checkpoints/
logs:
  seg-t: seg_tiny_mask/log.txt
  seg-b: seg_base_mask/log.txt

Video Segmentation

Zero shot video segmentation on DAVIS video dataset with Seg-B-Mask/16 model trained on ADE20K.

BibTex

@article{strudel2021,
  title={Segmenter: Transformer for Semantic Segmentation},
  author={Strudel, Robin and Garcia, Ricardo and Laptev, Ivan and Schmid, Cordelia},
  journal={arXiv preprint arXiv:2105.05633},
  year={2021}
}

Acknowledgements

The Vision Transformer code is based on timm library and the semantic segmentation training and evaluation pipeline is using mmsegmentation.

Owner
PhD student at Ecole Normale Supérieure and INRIA Paris
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts

DataSelection-NMT Selecting Parallel In-domain Sentences for Neural Machine Translation Using Monolingual Texts Quick update: The paper got accepted o

Javad Pourmostafa 6 Jan 07, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Dynamic Attentive Graph Learning for Image Restoration, ICCV2021 [PyTorch Code]

Dynamic Attentive Graph Learning for Image Restoration This repository is for GATIR introduced in the following paper: Chong Mou, Jian Zhang, Zhuoyuan

Jian Zhang 84 Dec 09, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation.

Distant Supervision for Scene Graph Generation Data and code for ICCV 2021 paper Distant Supervision for Scene Graph Generation. Introduction The pape

THUNLP 23 Dec 31, 2022
Certifiable Outlier-Robust Geometric Perception

Certifiable Outlier-Robust Geometric Perception About This repository holds the implementation for certifiably solving outlier-robust geometric percep

83 Dec 31, 2022
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
OcclusionFusion: realtime dynamic 3D reconstruction based on single-view RGB-D

OcclusionFusion (CVPR'2022) Project Page | Paper | Video Overview This repository contains the code for the CVPR 2022 paper OcclusionFusion, where we

Wenbin Lin 193 Dec 15, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
PyTorch implementation of MLP-Mixer

PyTorch implementation of MLP-Mixer MLP-Mixer: an all-MLP architecture composed of alternate token-mixing and channel-mixing operations. The token-mix

Duo Li 33 Nov 27, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022