Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

Overview

PyTorch Implementation of Differentiable ODE Solvers

This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpropagation through ODE solutions is supported using the adjoint method for constant memory cost. For usage of ODE solvers in deep learning applications, see reference [1].

As the solvers are implemented in PyTorch, algorithms in this repository are fully supported to run on the GPU.

Installation

To install latest stable version:

pip install torchdiffeq

To install latest on GitHub:

pip install git+https://github.com/rtqichen/torchdiffeq

Examples

Examples are placed in the examples directory.

We encourage those who are interested in using this library to take a look at examples/ode_demo.py for understanding how to use torchdiffeq to fit a simple spiral ODE.

ODE Demo

Basic usage

This library provides one main interface odeint which contains general-purpose algorithms for solving initial value problems (IVP), with gradients implemented for all main arguments. An initial value problem consists of an ODE and an initial value,

dy/dt = f(t, y)    y(t_0) = y_0.

The goal of an ODE solver is to find a continuous trajectory satisfying the ODE that passes through the initial condition.

To solve an IVP using the default solver:

from torchdiffeq import odeint

odeint(func, y0, t)

where func is any callable implementing the ordinary differential equation f(t, x), y0 is an any-D Tensor representing the initial values, and t is a 1-D Tensor containing the evaluation points. The initial time is taken to be t[0].

Backpropagation through odeint goes through the internals of the solver. Note that this is not numerically stable for all solvers (but should probably be fine with the default dopri5 method). Instead, we encourage the use of the adjoint method explained in [1], which will allow solving with as many steps as necessary due to O(1) memory usage.

To use the adjoint method:

from torchdiffeq import odeint_adjoint as odeint

odeint(func, y0, t)

odeint_adjoint simply wraps around odeint, but will use only O(1) memory in exchange for solving an adjoint ODE in the backward call.

The biggest gotcha is that func must be a nn.Module when using the adjoint method. This is used to collect parameters of the differential equation.

Differentiable event handling

We allow terminating an ODE solution based on an event function. Backpropagation through most solvers is supported. For usage of event handling in deep learning applications, see reference [2].

This can be invoked with odeint_event:

from torchdiffeq import odeint_event
odeint_event(func, y0, t0, *, event_fn, reverse_time=False, odeint_interface=odeint, **kwargs)
  • func and y0 are the same as odeint.
  • t0 is a scalar representing the initial time value.
  • event_fn(t, y) returns a tensor, and is a required keyword argument.
  • reverse_time is a boolean specifying whether we should solve in reverse time. Default is False.
  • odeint_interface is one of odeint or odeint_adjoint, specifying whether adjoint mode should be used for differentiating through the ODE solution. Default is odeint.
  • **kwargs: any remaining keyword arguments are passed to odeint_interface.

The solve is terminated at an event time t and state y when an element of event_fn(t, y) is equal to zero. Multiple outputs from event_fn can be used to specify multiple event functions, of which the first to trigger will terminate the solve.

Both the event time and final state are returned from odeint_event, and can be differentiated. Gradients will be backpropagated through the event function.

The numerical precision for the event time is determined by the atol argument.

See example of simulating and differentiating through a bouncing ball in examples/bouncing_ball.py.

Bouncing Ball

Keyword arguments for odeint(_adjoint)

Keyword arguments:

  • rtol Relative tolerance.
  • atol Absolute tolerance.
  • method One of the solvers listed below.
  • options A dictionary of solver-specific options, see the further documentation.

List of ODE Solvers:

Adaptive-step:

  • dopri8 Runge-Kutta of order 8 of Dormand-Prince-Shampine.
  • dopri5 Runge-Kutta of order 5 of Dormand-Prince-Shampine [default].
  • bosh3 Runge-Kutta of order 3 of Bogacki-Shampine.
  • fehlberg2 Runge-Kutta-Fehlberg of order 2.
  • adaptive_heun Runge-Kutta of order 2.

Fixed-step:

  • euler Euler method.
  • midpoint Midpoint method.
  • rk4 Fourth-order Runge-Kutta with 3/8 rule.
  • explicit_adams Explicit Adams-Bashforth.
  • implicit_adams Implicit Adams-Bashforth-Moulton.

Additionally, all solvers available through SciPy are wrapped for use with scipy_solver.

For most problems, good choices are the default dopri5, or to use rk4 with options=dict(step_size=...) set appropriately small. Adjusting the tolerances (adaptive solvers) or step size (fixed solvers), will allow for trade-offs between speed and accuracy.

Frequently Asked Questions

Take a look at our FAQ for frequently asked questions.

Further documentation

For details of the adjoint-specific and solver-specific options, check out the further documentation.

References

Applications of differentiable ODE solvers and event handling are discussed in these two papers:

[1] Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, David Duvenaud. "Neural Ordinary Differential Equations." Advances in Neural Information Processing Systems. 2018. [arxiv]

[2] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel. "Learning Neural Event Functions for Ordinary Differential Equations." International Conference on Learning Representations. 2021. [arxiv]


If you found this library useful in your research, please consider citing.

@article{chen2018neuralode,
  title={Neural Ordinary Differential Equations},
  author={Chen, Ricky T. Q. and Rubanova, Yulia and Bettencourt, Jesse and Duvenaud, David},
  journal={Advances in Neural Information Processing Systems},
  year={2018}
}

@article{chen2021eventfn,
  title={Learning Neural Event Functions for Ordinary Differential Equations},
  author={Chen, Ricky T. Q. and Amos, Brandon and Nickel, Maximilian},
  journal={International Conference on Learning Representations},
  year={2021}
}
Owner
Ricky Chen
Ricky Chen
3D-RETR: End-to-End Single and Multi-View3D Reconstruction with Transformers

3D-RETR: End-to-End Single and Multi-View 3D Reconstruction with Transformers (BMVC 2021) Zai Shi*, Zhao Meng*, Yiran Xing, Yunpu Ma, Roger Wattenhofe

Zai Shi 36 Dec 21, 2022
Model summary in PyTorch similar to `model.summary()` in Keras

Keras style model.summary() in PyTorch Keras has a neat API to view the visualization of the model which is very helpful while debugging your network.

Shubham Chandel 3.7k Dec 29, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL components from published papers, standardized evaluation, and experiment management.

GCL: Graph Contrastive Learning Library for PyTorch 592 Jan 07, 2023
You like pytorch? You like micrograd? You love tinygrad! ❤️

For something in between a pytorch and a karpathy/micrograd This may not be the best deep learning framework, but it is a deep learning framework. Due

George Hotz 9.7k Jan 05, 2023
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
A code copied from google-research which named motion-imitation was rewrited with PyTorch

motor-system Introduction A code copied from google-research which named motion-imitation was rewrited with PyTorch. More details can get from this pr

NewEra 6 Jan 08, 2022
The easiest way to use deep metric learning in your application. Modular, flexible, and extensible. Written in PyTorch.

News March 3: v0.9.97 has various bug fixes and improvements: Bug fixes for NTXentLoss Efficiency improvement for AccuracyCalculator, by using torch i

Kevin Musgrave 5k Jan 02, 2023
A PyTorch implementation of Learning to learn by gradient descent by gradient descent

Intro PyTorch implementation of Learning to learn by gradient descent by gradient descent. Run python main.py TODO Initial implementation Toy data LST

Ilya Kostrikov 300 Dec 11, 2022
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
A very simple and small path tracer written in pytorch meant to be run on the GPU

MentisOculi Pytorch Path Tracer A very simple and small path tracer written in pytorch meant to be run on the GPU Why use pytorch and not some other c

Matthew B. Mirman 222 Dec 01, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Unofficial PyTorch implementation of DeepMind's Perceiver IO with PyTorch Lightning scripts for distributed training

Martin Krasser 251 Dec 25, 2022
High-level batteries-included neural network training library for Pytorch

Pywick High-Level Training framework for Pytorch Pywick is a high-level Pytorch training framework that aims to get you up and running quickly with st

382 Dec 06, 2022
Implements pytorch code for the Accelerated SGD algorithm.

AccSGD This is the code associated with Accelerated SGD algorithm used in the paper On the insufficiency of existing momentum schemes for Stochastic O

205 Jan 02, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
Fast Discounted Cumulative Sums in PyTorch

TODO: update this README! Fast Discounted Cumulative Sums in PyTorch This repository implements an efficient parallel algorithm for the computation of

Daniel Povey 7 Feb 17, 2022
High-fidelity performance metrics for generative models in PyTorch

High-fidelity performance metrics for generative models in PyTorch

Vikram Voleti 5 Oct 24, 2021
PyTorch implementation of TabNet paper : https://arxiv.org/pdf/1908.07442.pdf

README TabNet : Attentive Interpretable Tabular Learning This is a pyTorch implementation of Tabnet (Arik, S. O., & Pfister, T. (2019). TabNet: Attent

DreamQuark 2k Dec 27, 2022
A tiny scalar-valued autograd engine and a neural net library on top of it with PyTorch-like API

micrograd A tiny Autograd engine (with a bite! :)). Implements backpropagation (reverse-mode autodiff) over a dynamically built DAG and a small neural

Andrej 3.5k Jan 08, 2023
Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Kaldi-compatible feature extraction with PyTorch, supporting CUDA, batch processing, chunk processing, and autograd

Fangjun Kuang 119 Jan 03, 2023