WaveFake: A Data Set to Facilitate Audio DeepFake Detection

Related tags

Deep LearningWaveFake
Overview

WaveFake: A Data Set to Facilitate Audio DeepFake Detection

logo

This is the code repository for our NeurIPS 2021 (Track on Datasets and Benchmarks) paper WaveFake.

Deep generative modeling has the potential to cause significant harm to society. Recognizing this threat, a magnitude of research into detecting so-called "Deepfakes" has emerged. This research most often focuses on the image domain, while studies exploring generated audio signals have - so far - been neglected. In this paper, we aim to narrow this gap. We present a novel data set, for which we collected ten sample sets from six different network architectures, spanning two languages. We analyze the frequency statistics comprehensively, discovering subtle differences between the architectures, specifically among the higher frequencies. Additionally, to facilitate further development of detection methods, we implemented three different classifiers adopted from the signal processing community to give practitioners a baseline to compare against. In a first evaluation, we already discovered significant trade-offs between the different approaches. Neural network-based approaches performed better on average, but more traditional models proved to be more robust.

Dataset & Pre-trained Models

You can find our dataset on zenodo and we also provide pre-trained models.

Setup

You can install all needed dependencies by running:

pip install -r requirements.txt

RawNet2 Model

For consistency, we use the RawNet2 model provided by the ASVSpoof 2021 challenge. Please download the model specifications here and place it under dfadetect/models as raw_net2.py.

Statistics & Plots

To recreate the plots/statistics of the paper, use:

python statistics.py -h

usage: statistics.py [-h] [--amount AMOUNT] [--no-stats] [DATASETS ...]

positional arguments:
  DATASETS              Path to datasets. The first entry is assumed to be the referrence one. Specified as follows 
   
    

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to concider.
  --no-stats, -s        Do not compute stats, only plots.

   

Example

python statistics.py /path/to/reference/data,ReferenceDataName /path/to/generated/data,GeneratedDataName -a 10000

Training models

You can use the training script as follows:

python train_models.py -h

usage: train_models.py [-h] [--amount AMOUNT] [--clusters CLUSTERS] [--batch_size BATCH_SIZE] [--epochs EPOCHS] [--retraining RETRAINING] [--ckpt CKPT] [--use_em] [--raw_net] [--cuda] [--lfcc] [--debug] [--verbose] REAL FAKE

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.

optional arguments:
  -h, --help            show this help message and exit
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --batch_size BATCH_SIZE, -b BATCH_SIZE
                        Batch size (default: 8).
  --epochs EPOCHS, -e EPOCHS
                        Epochs (default: 5).
  --retraining RETRAINING, -r RETRAINING
                        Retraining tries (default: 10).
  --ckpt CKPT           Checkpoint directory (default: trained_models).
  --use_em              Use EM version?
  --raw_net             Train raw net version?
  --cuda, -c            Use cuda?
  --lfcc, -l            Use LFCC instead of MFCC?
  --debug, -d           Only use minimal amount of files?
  --verbose, -v         Display debug information?

Example

To train all EM-GMMs use:

python train_models.py /data/LJSpeech-1.1/wavs /data/generated_audio -k 128 -v --use_em --epochs 100

Evaluation

For evaluation you can use the evaluate_models script:

python evaluate_models.p -h

usage: evaluate_models.py [-h] [--output OUTPUT] [--clusters CLUSTERS] [--amount AMOUNT] [--raw_net] [--debug] [--cuda] REAL FAKE MODELS

positional arguments:
  REAL                  Directory containing real data.
  FAKE                  Directory containing fake data.
  MODELS                Directory containing model checkpoints.

optional arguments:
  -h, --help            show this help message and exit
  --output OUTPUT, -o OUTPUT
                        Output file name.
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --amount AMOUNT, -a AMOUNT
                        Amount of files to load from each directory (default: None - all).
  --raw_net, -r         RawNet models?
  --debug, -d           Only use minimal amount of files?
  --cuda, -c            Use cuda?

Example

python evaluate_models.py /data/LJSpeech-1.1/wavs /data/generated_audio trained_models/lfcc/em

Make sure to move the out-of-distribution models to a seperate directory first!

Attribution

We provide a script to attribute the GMM models:

python attribute.py -h

usage: attribute.py [-h] [--clusters CLUSTERS] [--steps STEPS] [--blur] FILE REAL_MODEL FAKE_MODEL

positional arguments:
  FILE                  Audio sample to attribute.
  REAL_MODEL            Real model to attribute.
  FAKE_MODEL            Fake Model to attribute.

optional arguments:
  -h, --help            show this help message and exit
  --clusters CLUSTERS, -k CLUSTERS
                        The amount of clusters to learn (default: 128).
  --steps STEPS, -m STEPS
                        Amount of steps for integrated gradients.
  --blur, -b            Compute BlurIG instead.

Example

python attribute.py /data/LJSpeech-1.1/wavs/LJ008-0217.wav path/to/real/model.pth path/to/fake/model.pth

BibTeX

When you cite our work feel free to use the following bibtex entry:

@inproceedings{
  frank2021wavefake,
  title={{WaveFake: A Data Set to Facilitate Audio Deepfake Detection}},
  author={Joel Frank and Lea Sch{\"o}nherr},
  booktitle={Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track},
  year={2021},
}
Owner
Chair for Sys­tems Se­cu­ri­ty
Chair for Sys­tems Se­cu­ri­ty
The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter

FAPIS The official implementation of the CVPR 2021 paper FAPIS: a Few-shot Anchor-free Part-based Instance Segmenter Introduction This repo is primari

Khoi Nguyen 8 Dec 11, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
[NIPS 2021] UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration.

UOTA: Improving Self-supervised Learning with Automated Unsupervised Outlier Arbitration This repository is the official PyTorch implementation of UOT

6 Jun 29, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Intelligent Video Analytics toolkit based on different inference backends.

English | 中文 OpenIVA OpenIVA is an end-to-end intelligent video analytics development toolkit based on different inference backends, designed to help

Quantum Liu 15 Oct 27, 2022
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
wlad 2 Dec 19, 2022
Official implement of "CAT: Cross Attention in Vision Transformer".

CAT: Cross Attention in Vision Transformer This is official implement of "CAT: Cross Attention in Vision Transformer". Abstract Since Transformer has

100 Dec 15, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Framework that uses artificial intelligence applied to mathematical models to make predictions

LiconIA Framework that uses artificial intelligence applied to mathematical models to make predictions Interface Overview Table of contents [TOC] 1 Ar

4 Jun 20, 2021
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Matthias Fey 139 Dec 25, 2022
A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

A Library for Modelling Probabilistic Hierarchical Graphical Models in PyTorch

Korbinian Pöppel 47 Nov 28, 2022