Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Overview

Receptive Field Block Net for Accurate and Fast Object Detection

By Songtao Liu, Di Huang, Yunhong Wang

Updatas (2021/07/23): YOLOX is here!, stronger YOLO with ONNX, TensorRT, ncnn, and OpenVino supported!!

Updates: we propose a new method to get 42.4 mAP at 45 FPS on COCO, code is available here

Introduction

Inspired by the structure of Receptive Fields (RFs) in human visual systems, we propose a novel RF Block (RFB) module, which takes the relationship between the size and eccentricity of RFs into account, to enhance the discriminability and robustness of features. We further assemble the RFB module to the top of SSD with a lightweight CNN model, constructing the RFB Net detector. You can use the code to train/evaluate the RFB Net for object detection. For more details, please refer to our ECCV paper.

   

VOC2007 Test

System mAP FPS (Titan X Maxwell)
Faster R-CNN (VGG16) 73.2 7
YOLOv2 (Darknet-19) 78.6 40
R-FCN (ResNet-101) 80.5 9
SSD300* (VGG16) 77.2 46
SSD512* (VGG16) 79.8 19
RFBNet300 (VGG16) 80.7 83
RFBNet512 (VGG16) 82.2 38

COCO

System test-dev mAP Time (Titan X Maxwell)
Faster R-CNN++ (ResNet-101) 34.9 3.36s
YOLOv2 (Darknet-19) 21.6 25ms
SSD300* (VGG16) 25.1 22ms
SSD512* (VGG16) 28.8 53ms
RetinaNet500 (ResNet-101-FPN) 34.4 90ms
RFBNet300 (VGG16) 30.3 15ms
RFBNet512 (VGG16) 33.8 30ms
RFBNet512-E (VGG16) 34.4 33ms

MobileNet

System COCO minival mAP #parameters
SSD MobileNet 19.3 6.8M
RFB MobileNet 20.7 7.4M

Citing RFB Net

Please cite our paper in your publications if it helps your research:

@InProceedings{Liu_2018_ECCV,
author = {Liu, Songtao and Huang, Di and Wang, andYunhong},
title = {Receptive Field Block Net for Accurate and Fast Object Detection},
booktitle = {The European Conference on Computer Vision (ECCV)},
month = {September},
year = {2018}
}

Contents

  1. Installation
  2. Datasets
  3. Training
  4. Evaluation
  5. Models

Installation

  • Install PyTorch-0.4.0 by selecting your environment on the website and running the appropriate command.
  • Clone this repository. This repository is mainly based on ssd.pytorch and Chainer-ssd, a huge thank to them.
    • Note: We currently only support PyTorch-0.4.0 and Python 3+.
  • Compile the nms and coco tools:
./make.sh

Note: Check you GPU architecture support in utils/build.py, line 131. Default is:

'nvcc': ['-arch=sm_52',
  • Then download the dataset by following the instructions below and install opencv.
conda install opencv

Note: For training, we currently support VOC and COCO.

Datasets

To make things easy, we provide simple VOC and COCO dataset loader that inherits torch.utils.data.Dataset making it fully compatible with the torchvision.datasets API.

VOC Dataset

Download VOC2007 trainval & test
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2007.sh # <directory>
Download VOC2012 trainval
# specify a directory for dataset to be downloaded into, else default is ~/data/
sh data/scripts/VOC2012.sh # <directory>

COCO Dataset

Install the MS COCO dataset at /path/to/coco from official website, default is ~/data/COCO. Following the instructions to prepare minival2014 and valminusminival2014 annotations. All label files (.json) should be under the COCO/annotations/ folder. It should have this basic structure

$COCO/
$COCO/cache/
$COCO/annotations/
$COCO/images/
$COCO/images/test2015/
$COCO/images/train2014/
$COCO/images/val2014/

UPDATE: The current COCO dataset has released new train2017 and val2017 sets which are just new splits of the same image sets.

Training

mkdir weights
cd weights
wget https://s3.amazonaws.com/amdegroot-models/vgg16_reducedfc.pth
  • To train RFBNet using the train script simply specify the parameters listed in train_RFB.py as a flag or manually change them.
python train_RFB.py -d VOC -v RFB_vgg -s 300 
  • Note:
    • -d: choose datasets, VOC or COCO.
    • -v: choose backbone version, RFB_VGG, RFB_E_VGG or RFB_mobile.
    • -s: image size, 300 or 512.
    • You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see train_RFB.py for options)
    • If you want to reproduce the results in the paper, the VOC model should be trained about 240 epoches while the COCO version need 130 epoches.

Evaluation

To evaluate a trained network:

python test_RFB.py -d VOC -v RFB_vgg -s 300 --trained_model /path/to/model/weights

By default, it will directly output the mAP results on VOC2007 test or COCO minival2014. For VOC2012 test and COCO test-dev results, you can manually change the datasets in the test_RFB.py file, then save the detection results and submitted to the server.

Models

Owner
Liu Songtao
我萧峰大好男儿~ Factos👍👀​
Liu Songtao
Codebase of deep learning models for inferring stability of mRNA molecules

Kaggle OpenVaccine Models Codebase of deep learning models for inferring stability of mRNA molecules, corresponding to the Kaggle Open Vaccine Challen

Eternagame 40 Dec 29, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Robot Action Primitives (RAPS) This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action

Murtaza Dalal 55 Dec 27, 2022
Model-based reinforcement learning in TensorFlow

Bellman Website | Twitter | Documentation (latest) What does Bellman do? Bellman is a package for model-based reinforcement learning (MBRL) in Python,

46 Nov 09, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
Gif-caption - A straightforward GIF Captioner written in Python

Broksy's GIF Captioner Have you ever wanted to easily caption a GIF without havi

3 Apr 09, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Face Depixelizer based on "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models" repository.

NOTE We have noticed a lot of concern that PULSE will be used to identify individuals whose faces have been blurred out. We want to emphasize that thi

Denis Malimonov 2k Dec 29, 2022
PyTorch implementation of "Dataset Knowledge Transfer for Class-Incremental Learning Without Memory" (WACV2022)

Dataset Knowledge Transfer for Class-Incremental Learning Without Memory [Paper] [Slides] Summary Introduction Installation Reproducing results Citati

Habib Slim 5 Dec 05, 2022
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
ECCV18 Workshops - Enhanced SRGAN. Champion PIRM Challenge on Perceptual Super-Resolution. The training codes are in BasicSR.

ESRGAN (Enhanced SRGAN) [ 🚀 BasicSR] [Real-ESRGAN] ✨ New Updates. We have extended ESRGAN to Real-ESRGAN, which is a more practical algorithm for rea

Xintao 4.7k Jan 02, 2023
Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation

UTNet (Accepted at MICCAI 2021) Official implementation of UTNet: A Hybrid Transformer Architecture for Medical Image Segmentation Introduction Transf

110 Jan 01, 2023
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

Miloš Stanojević 11 Oct 14, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Cartoon-StyleGan2 🙃 : Fine-tuning StyleGAN2 for Cartoon Face Generation

Fine-tuning StyleGAN2 for Cartoon Face Generation

Jihye Back 520 Jan 04, 2023
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition

RepMLP: Re-parameterizing Convolutions into Fully-connected Layers for Image Recognition (PyTorch) Paper: https://arxiv.org/abs/2105.01883 Citation: @

260 Jan 03, 2023
SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch.

The SpeechBrain Toolkit SpeechBrain is an open-source and all-in-one speech toolkit based on PyTorch. The goal is to create a single, flexible, and us

SpeechBrain 5.1k Jan 02, 2023