GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

Related tags

Deep LearningGPOEO
Overview

GPOEO

GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison.

[1] P. Zou, L. Ang, K. Barker, and R. Ge, “Indicator-directed dynamic power management for iterative workloads on gpu-accelerated systems,” in 2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID). IEEE, 2020, pp. 559-568.

  1. ./EPOpt contains source code of the GPOEO and ODPP [1].

  2. ./PerformanceMeasurement (PerfMeasure) is a NVIDIA GPU measurer for energy/power/utilities/clocks

Make GPOEO

Modify pathes of headers and libraries in ./EPOpt/makefile . cd ./EPOpt && mkdir ./build && cp makefile ./build cd ./build && make

Make PerfMeasure

Modify pathes of headers and libraries in ./PerformanceMeasurement/makefile . cd ./PerformanceMeasurement && mkdir ./build && cp makefile ./build cd ./build && make

Use GPOEO in python applications

GPOEO only has two APIs:

Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
End()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "WORK" (run energy saving online); "MEASURE" (measure hardware performance counter metrics and other data for training multi-objective prediction models).

MeasureOutDir: measurement output file path.

ModelDir: the path of multi-objective prediction models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from PyEPOpt import EPOpt

if __name__=="__main__":
    EPOpt.Begin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    EPOpt.End()

Use ODPP [1] in python applications

ODPP can be implemented as a daemon. However, for the convenience of comparing GPOEO and ODPP, we also implement ODPP into the same form: two APIs.

ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)
ODPPEnd()

GPUID4CUDA: GPU ID used in CUDA environment.

GPUID4NVML: GPU ID queried with nvidia-smi and used to initialize CUPTI.

RunMode: "ODPP" (run ODPP online).

MeasureOutDir: not used.

ModelDir: the path of ODPP models.

TestPrefix: prefix name of one run.

The two APIs should be inserted at the beginning and end of the main python file respectively. As shown below:

from ODPP import ODPPBegin, ODPPEnd

if __name__=="__main__":
    ODPPBegin(GPUID4CUDA, GPUID4NVML, RunMode, MeasureOutDir, ModelDir, TestPrefix)

    .....

    ODPPEnd()
Owner
瑞雪轻飏
瑞雪轻飏
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
A universal memory dumper using Frida

Fridump Fridump (v0.1) is an open source memory dumping tool, primarily aimed to penetration testers and developers. Fridump is using the Frida framew

551 Jan 07, 2023
The implementation of FOLD-R++ algorithm

FOLD-R-PP The implementation of FOLD-R++ algorithm. The target of FOLD-R++ algorithm is to learn an answer set program for a classification task. Inst

13 Dec 23, 2022
small collection of functions for neural networks

neurobiba other languages: RU small collection of functions for neural networks. very easy to use! Installation: pip install neurobiba See examples h

4 Aug 23, 2021
Repository For Programmers Seeking a platform to show their skills

Programming-Nerds Repository For Programmers Seeking Pull Requests In hacktoberfest ❓ What's Hacktoberfest 2021? Hacktoberfest is the easiest way to g

42 Oct 29, 2022
💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena

💃 VALSE: A Task-Independent Benchmark for Vision and Language Models Centered on Linguistic Phenomena.

Heidelberg-NLP 17 Nov 07, 2022
Picasso: A CUDA-based Library for Deep Learning over 3D Meshes

The Picasso Library is intended for complex real-world applications with large-scale surfaces, while it also performs impressively on the small-scale applications over synthetic shape manifolds. We h

97 Dec 01, 2022
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
The source code of CVPR 2019 paper "Deep Exemplar-based Video Colorization".

Deep Exemplar-based Video Colorization (Pytorch Implementation) Paper | Pretrained Model | Youtube video 🔥 | Colab demo Deep Exemplar-based Video Col

Bo Zhang 253 Dec 27, 2022
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing

QSYM: A Practical Concolic Execution Engine Tailored for Hybrid Fuzzing Environment Tested on Ubuntu 14.04 64bit and 16.04 64bit Installation # disabl

gts3.org (<a href=[email protected])"> 581 Dec 30, 2022
TensorFlow ROCm port

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

ROCm Software Platform 622 Jan 09, 2023
A scikit-learn-compatible module for estimating prediction intervals.

MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals (or prediction sets) using your favourit

588 Jan 04, 2023