An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

Overview

ALgorithmic_Trading_with_ML

An algorithmic trading bot that learns and adapts to new data and evolving markets using Financial Python Programming and Machine Learning.

The following steps are followed :

  • Establishing a Baseline Performance
  • Tuning the Baseline Trading Algorithm
  • Evaluating a New Machine Learning Classifier
  • Creating an Evaluation Report

Establishing a Baseline Performance

  1. Importing the OHLCV dataset into a Pandas DataFrame.

  2. Trading signals are created using short- and long-window SMA values.

svm_original_report

  1. The data is splitted into training and testing datasets.

  2. Using the SVC classifier model from SKLearn's support vector machine (SVM) learning method to fit the training data and making predictions based on the testing data. Reviewing the predictions.

  3. Reviewing the classification report associated with the SVC model predictions.

svm_strategy_returns

  1. Creating a predictions DataFrame that contains columns for “Predicted” values, “Actual Returns”, and “Strategy Returns”.

  2. Creating a cumulative return plot that shows the actual returns vs. the strategy returns. Save a PNG image of this plot. This will serve as a baseline against which to compare the effects of tuning the trading algorithm.

Actual_Returns_Vs_SVM_Original_Returns


Tune the Baseline Trading Algorithm

The model’s input features are tuned to find the parameters that result in the best trading outcomes. The cumulative products of the strategy returns are compared. Below steps are followed:

  1. The training algorithm is tuned by adjusting the size of the training dataset. To do so, slice your data into different periods.

10_month_svm_report 24_month_sw_4_lw_100_report 48month_sw_4_lw_100_report

Answer the following question: What impact resulted from increasing or decreasing the training window?

Increasing the training dataset size alone did not improve the returns prediction. The precision and recall values for class -1 improved with increase in training set data and presion and recall values for class 1 decreased compared to the original training daatset size(3 months)

  1. The trading algorithm is tuned by adjusting the SMA input features. Adjusting one or both of the windows for the algorithm.

Answer the following question: What impact resulted from increasing or decreasing either or both of the SMA windows?

  • Increasing the short window for SMA increased impacted the precision and recall scores. It improves these scores till certain limit and then the scores decreases.
  • While increasing the short window when we equally incresase the long window we could achieve optimal maximized scores.
  • Another interesting obervation is that when the training dataset increses the short window and long window has to be incresed to get maximum output.

3_month_sw_8_lw_100_report

The set of parameters that best improved the trading algorithm returns. 48_month_sw_10_lw_270_report 48_month_sw_10_lw_270_return_comparison


Evaluating a New Machine Learning Classifier

The original parameters are applied to a second machine learning model to find its performance. To do so, below steps are followed:

  1. Importing a new classifier, we chose LogisticRegression as our new classifier.

  2. Using the original training data we fit the Logistic regression model.

  3. The Logistic Regression model is backtested to evaluate its performance.

Answer the following questions: Did this new model perform better or worse than the provided baseline model? Did this new model perform better or worse than your tuned trading algorithm?

This new model performed good but not as well as our provided baseline model or the tuned trading algorithm.

lr_report lr_return_comparison

Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution

unfoldedVBA Unrolled Variational Bayesian Algorithm for Image Blind Deconvolution This repository contains the Pytorch implementation of the unrolled

Yunshi HUANG 2 Jul 10, 2022
A framework for using LSTMs to detect anomalies in multivariate time series data. Includes spacecraft anomaly data and experiments from the Mars Science Laboratory and SMAP missions.

Telemanom (v2.0) v2.0 updates: Vectorized operations via numpy Object-oriented restructure, improved organization Merge branches into single branch fo

Kyle Hundman 844 Dec 28, 2022
PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment

logit-adj-pytorch PyTorch implementation of the paper: Long-tail Learning via Logit Adjustment This code implements the paper: Long-tail Learning via

Chamuditha Jayanga 53 Dec 23, 2022
Github for the conference paper GLOD-Gaussian Likelihood OOD detector

FOOD - Fast OOD Detector Pytorch implamentation of the confernce peper FOOD arxiv link. Abstract Deep neural networks (DNNs) perform well at classifyi

17 Jun 19, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
Make Watson Assistant send messages to your Discord Server

Make Watson Assistant send messages to your Discord Server Prerequisites Sign up for an IBM Cloud account. Fill in the required information and press

1 Jan 10, 2022
Keras udrl - Keras implementation of Upside Down Reinforcement Learning

keras_udrl Keras implementation of Upside Down Reinforcement Learning This is me

Eder Santana 7 Jan 24, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Learning nonlinear operators via DeepONet

DeepONet: Learning nonlinear operators The source code for the paper Learning nonlinear operators via DeepONet based on the universal approximation th

Lu Lu 239 Jan 02, 2023
Breaking the Dilemma of Medical Image-to-image Translation

Breaking the Dilemma of Medical Image-to-image Translation Supervised Pix2Pix and unsupervised Cycle-consistency are two modes that dominate the field

Kid Liet 86 Dec 21, 2022
Video Matting Refinement For Python

Video-matting refinement Library (use pip to install) scikit-image numpy av matplotlib Run Static background python path_to_video.mp4 Moving backgroun

3 Jan 11, 2022
FID calculation with proper image resizing and quantization steps

clean-fid: Fixing Inconsistencies in FID Project | Paper The FID calculation involves many steps that can produce inconsistencies in the final metric.

Gaurav Parmar 606 Jan 06, 2023
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Pytorch implementation of "Get To The Point: Summarization with Pointer-Generator Networks"

About this repository This repo contains an Pytorch implementation for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Netwo

wxDai 7 Oct 14, 2022
Latent Execution for Neural Program Synthesis

Latent Execution for Neural Program Synthesis This repo provides the code to replicate the experiments in the paper Xinyun Chen, Dawn Song, Yuandong T

Xinyun Chen 16 Oct 02, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Codebase for Image Classification Research, written in PyTorch.

pycls pycls is an image classification codebase, written in PyTorch. It was originally developed for the On Network Design Spaces for Visual Recogniti

Facebook Research 2k Jan 01, 2023
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Sudoku solver - A sudoku solver with python

sudoku_solver A sudoku solver What is Sudoku? Sudoku (Japanese: 数独, romanized: s

Sikai Lu 0 May 22, 2022