RL Algorithms with examples in Python / Pytorch / Unity ML agents

Overview

Reinforcement Learning Project

This project was created to make it easier to get started with Reinforcement Learning. It now contains:

Getting Started

Install Basic Dependencies

To set up your python environment to run the code in the notebooks, follow the instructions below.

  • If you're on Windows I recommend installing Miniforge. It's a minimal installer for Conda. I also recommend using the Mamba package manager instead of Conda. It works almost the same as Conda, but only faster. There's a cheatsheet of Conda commands which also work in Mamba. To install Mamba, use this command:
conda install mamba -n base -c conda-forge 
  • Create (and activate) a new environment with Python 3.6 or later. I recommend using Python 3.9:

    • Linux or Mac:
    mamba create --name rl39 python=3.9 numpy
    source activate rl39
    • Windows:
    mamba create --name rl39 python=3.9 numpy
    activate rl39
  • Install PyTorch by following instructions on Pytorch.org. For example, to install PyTorch on Windows with GPU support, use this command:

mamba install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch
  • Install additional packages:
mamba install jupyter notebook matplotlib
python -m ipykernel install --user --name rl39 --display-name "rl39"
  • Change the kernel to match the rl39 environment by using the drop-down menu Kernel -> Change kernel inside Jupyter Notebook.

Install Unity Machine Learning Agents

Note: In order to run the notebooks on Windows, it's not necessary to install the Unity Editor, because I have provided the standalone executables of the environments for you.

Unity ML Agents is the software that we use for the environments. The agents that we create in Python can interact with these environments. Unity ML Agents consists of several parts:

  • The Unity Editor is used for creating environments. To install:

    • Install Unity Hub.
    • Install the latest version of Unity by clicking on the green button Unity Hub on the download page.

    To start the Unity editor you must first have a project:

    • Start the Unity Hub.
    • Click on "Projects"
    • Create a new dummy project.
    • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.
  • The Unity ML-Agents Toolkit. Download the latest release of the source code or use the Git command: git clone --branch release_18 https://github.com/Unity-Technologies/ml-agents.git.

  • The Unity ML Agents package is used inside the Unity Editor. Please read the instructions for installation.

  • The mlagents Python package is used as a bridge between Python and the Unity editor (or standalone executable). To install, use this command: python -m pip install mlagents==0.27.0. Please note that there's no conda package available for this.

Install an IDE for Python

For Windows, I would recommend using PyCharm (my choice), or Visual Studio Code. Inside those IDEs you can use the Conda environment you have just created.

Creating a custom Unity executable

Load the examples project

The Unity ML-Agents Toolkit contains several example environments. Here we will load them all inside the Unity editor:

  • Start the Unity Hub.
  • Click on "Projects"
  • Add a project by navigating to the Project folder inside the toolkit.
  • Click on the project you've just added in the Unity Hub. The Unity Editor should start now.

Create a 3D Ball executable

The 3D Ball example contains 12 environments in one, but this doesn't work very well in the Python API. The main problem is that there's no way to reset each environment individually. Therefore, we will remove the other 11 environments in the editor:

  • Load the 3D Ball scene, by going to the project window and navigating to Examples -> 3DBall -> Scenes-> 3DBall
  • In the Hierarchy window select the other 11 3DBall objects and delete them, so that only the 3DBall object remains.

Next, we will build the executable:

  • Go to File -> Build Settings
  • In the Build Settings window, click Build
  • Navigate to notebooks folder and add 3DBall to the folder name that is used for the build.

Instructions for running the notebooks

  1. Download the Unity executables for Windows. In case you're not on Windows, you have to build the executables yourself by following the instructions above.
  2. Place the Unity executable folders in the same folder as the notebooks.
  3. Load a notebook with Jupyter notebook. (The command to start Jupyter notebook is jupyter notebook)
  4. Follow further instructions in the notebook.
You might also like...
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.
An example project demonstrating how the Autonomous Learning Library can be used to build new reinforcement learning agents.

About This repository shows how Autonomous Learning Library can be used to build new reinforcement learning agents. In particular, it contains a model

​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.
Pacman-AI - AI project designed by UC Berkeley. Designed reflex and minimax agents for the game Pacman.

Pacman AI Jussi Doherty CAP 4601 - Introduction to Artificial Intelligence - Fall 2020 Python version 3.0+ Source of this project This repo contains a

Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch
PyTorch implementation of Advantage async actor-critic Algorithms (A3C) in PyTorch

Advantage async actor-critic Algorithms (A3C) in PyTorch @inproceedings{mnih2016asynchronous, title={Asynchronous methods for deep reinforcement lea

TensorRT examples (Jetson, Python/C++)(object detection)
TensorRT examples (Jetson, Python/C++)(object detection)

TensorRT examples (Jetson, Python/C++)(object detection)

Hi Guys, here I am providing examples, which will help you in Lerarning Python

LearningPython Hi guys, here I am trying to include as many practice examples of Python Language, as i Myself learn, and hope these will help you in t

Releases(v1.0.0)
Owner
Rogier Wachters
Rogier Wachters
Spectral Temporal Graph Neural Network (StemGNN in short) for Multivariate Time-series Forecasting

Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting This repository is the official implementation of Spectral Temporal Gr

Microsoft 306 Dec 29, 2022
Feup-csr - Repository holding my group's submission to the CSR project competition

CSR Competições de Swarm Robotics Swarm Robotics Competitions This repository holds the files submitted for the CSR project competition. Project group

Nuno Pereira 1 Jan 04, 2022
2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation

2021-MICCAI-Progressively Normalized Self-Attention Network for Video Polyp Segmentation Authors: Ge-Peng Ji*, Yu-Cheng Chou*, Deng-Ping Fan, Geng Che

Ge-Peng Ji (Daniel) 85 Dec 30, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
Learning Temporal Consistency for Low Light Video Enhancement from Single Images (CVPR2021)

StableLLVE This is a Pytorch implementation of "Learning Temporal Consistency for Low Light Video Enhancement from Single Images" in CVPR 2021, by Fan

99 Dec 19, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Mind the Trade-off: Debiasing NLU Models without Degrading the In-distribution Performance

Models for natural language understanding (NLU) tasks often rely on the idiosyncratic biases of the dataset, which make them brittle against test cases outside the training distribution.

Ubiquitous Knowledge Processing Lab 22 Jan 02, 2023
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
Deep learning based hand gesture recognition using LSTM and MediaPipie.

Hand Gesture Recognition Deep learning based hand gesture recognition using LSTM and MediaPipie. Demo video using PingPong Robot Files Pretrained mode

Brad 24 Nov 11, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
[RSS 2021] An End-to-End Differentiable Framework for Contact-Aware Robot Design

DiffHand This repository contains the implementation for the paper An End-to-End Differentiable Framework for Contact-Aware Robot Design (RSS 2021). I

Jie Xu 60 Jan 04, 2023
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
OpenGAN: Open-Set Recognition via Open Data Generation

OpenGAN: Open-Set Recognition via Open Data Generation ICCV 2021 (oral) Real-world machine learning systems need to analyze novel testing data that di

Shu Kong 90 Jan 06, 2023
Author Disambiguation using Knowledge Graph Embeddings with Literals

Author Name Disambiguation with Knowledge Graph Embeddings using Literals This is the repository for the master thesis project on Knowledge Graph Embe

12 Oct 19, 2022