Hooks for VCOCO

Related tags

Deep Learningv-coco
Overview

Verbs in COCO (V-COCO) Dataset

This repository hosts the Verbs in COCO (V-COCO) dataset and associated code to evaluate models for the Visual Semantic Role Labeling (VSRL) task as ddescribed in this technical report.

Citing

If you find this dataset or code base useful in your research, please consider citing the following papers:

@article{gupta2015visual,
  title={Visual Semantic Role Labeling},
  author={Gupta, Saurabh and Malik, Jitendra},
  journal={arXiv preprint arXiv:1505.04474},
  year={2015}
}

@incollection{lin2014microsoft,
  title={Microsoft COCO: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={Computer Vision--ECCV 2014},
  pages={740--755},
  year={2014},
  publisher={Springer}
}

Installation

  1. Clone repository (recursively, so as to include COCO API).

    git clone --recursive https://github.com/s-gupta/v-coco.git
  2. This dataset builds off MS COCO, please download MS-COCO images and annotations.

  3. Current V-COCO release only uses a subset of MS-COCO images (Image IDs listed in data/splits/vcoco_all.ids). Use the following script to pick out annotations from the COCO annotations to allow faster loading in V-COCO.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR
    # If you downloaded coco annotations to coco-data/annotations
    python script_pick_annotations.py coco-data/annotations
  4. Build coco/PythonAPI/pycocotools/_mask.so, cython_bbox.so.

    # Assume you cloned the repository to `VCOCO_DIR'
    cd $VCOCO_DIR/coco/PythonAPI/ && make
    cd $VCOCO_DIR && make

Using the dataset

  1. An IPython notebook, illustrating how to use the annotations in the dataset is available in V-COCO.ipynb
  2. The current release of the dataset includes annotations as indicated in Table 1 in the paper. We are collecting role annotations for the 6 categories (that are missing) and will make them public shortly.

Evaluation

We provide evaluation code that computes agent AP and role AP, as explained in the paper.

In order to use the evaluation code, store your predictions as a pickle file (.pkl) in the following format:

[ {'image_id':        # the coco image id,
   'person_box':      #[x1, y1, x2, y2] the box prediction for the person,
   '[action]_agent':  # the score for action corresponding to the person prediction,
   '[action]_[role]': # [x1, y1, x2, y2, s], the predicted box for role and 
                      # associated score for the action-role pair.
   } ]

Assuming your detections are stored in det_file=/path/to/detections/detections.pkl, do

from vsrl_eval import VCOCOeval
vcocoeval = VCOCOeval(vsrl_annot_file, coco_file, split_file)
  # e.g. vsrl_annot_file: data/vcoco/vcoco_val.json
  #      coco_file:       data/instances_vcoco_all_2014.json
  #      split_file:      data/splits/vcoco_val.ids
vcocoeval._do_eval(det_file, ovr_thresh=0.5)

We introduce two scenarios for role AP evaluation.

  1. [Scenario 1] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 & the corresponding role is empty e.g. [0,0,0,0] or [NaN,NaN,NaN,NaN]. This scenario is fit for missing roles due to occlusion.

  2. [Scenario 2] In this scenario, for the test cases with missing role annotations an agent role prediction is correct if the action is correct & the overlap between the person boxes is >0.5 (the corresponding role is ignored). This scenario is fit for the cases with roles outside the COCO categories.

Owner
Saurabh Gupta
Saurabh Gupta
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Code of the paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodner and Joachim Denzler

Part Detector Discovery This is the code used in our paper "Part Detector Discovery in Deep Convolutional Neural Networks" by Marcel Simon, Erik Rodne

Computer Vision Group Jena 17 Feb 22, 2022
R3Det based on mmdet 2.19.0

R3Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object Installation # install mmdetection first if you haven't installed it

SJTU-Thinklab-Det 38 Dec 15, 2022
An implementation of the proximal policy optimization algorithm

PPO Pytorch C++ This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment t

Martin Huber 59 Dec 09, 2022
This library contains a Tensorflow implementation of the paper Stability Analysis of Unfolded WMMSE for Power Allocation

UWMMSE-stability Tensorflow implementation of Stability Analysis of UWMMSE Overview This library contains a Tensorflow implementation of the paper Sta

Arindam Chowdhury 1 Nov 16, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
This repository is all about spending some time the with the original problem posed by Minsky and Papert

This repository is all about spending some time the with the original problem posed by Minsky and Papert. Working through this problem is a great way to begin learning computer vision.

Jaissruti Nanthakumar 1 Jan 23, 2022
Simulations for Turring patterns on an apically expanding domain. T

Turing patterns on expanding domain Simulations for Turring patterns on an apically expanding domain. The details about the models and numerical imple

Yue Liu 0 Aug 03, 2021
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
Any-to-any voice conversion using synthetic specific-speaker speeches as intermedium features

MediumVC MediumVC is an utterance-level method towards any-to-any VC. Before that, we propose SingleVC to perform A2O tasks(Xi → Ŷi) , Xi means utter

谷下雨 47 Dec 25, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
Neural networks applied in recognizing guitar chords using python, AutoML.NET with C# and .NET Core

Chord Recognition Demo application The demo application is written in C# with .NETCore. As of July 9, 2020, the only version available is for windows

Andres Mauricio Rondon Patiño 24 Oct 22, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
Ian Covert 130 Jan 01, 2023
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
Driller: augmenting AFL with symbolic execution!

Driller Driller is an implementation of the driller paper. This implementation was built on top of AFL with angr being used as a symbolic tracer. Dril

Shellphish 791 Jan 06, 2023
Image Data Augmentation in Keras

Image data augmentation is a technique that can be used to artificially expand the size of a training dataset by creating modified versions of images in the dataset.

Grace Ugochi Nneji 3 Feb 15, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

23 Nov 11, 2022