An Unsupervised Graph-based Toolbox for Fraud Detection

Overview



Building GitHub Downloads Pypi version

An Unsupervised Graph-based Toolbox for Fraud Detection

Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates several state-of-the-art graph-based fraud detection algorithms. It can be applied to bipartite graphs (e.g., user-product graph), and it can estimate the suspiciousness of both nodes and edges. The implemented models can be found here.

The toolbox incorporates the Markov Random Field (MRF)-based algorithm, dense-block detection-based algorithm, and SVD-based algorithm. For MRF-based algorithms, the users only need the graph structure and the prior suspicious score of the nodes as the input. For other algorithms, the graph structure is the only input.

Meanwhile, we have a deep graph-based fraud detection toolbox which implements state-of-the-art graph neural network-based fraud detectors.

We welcome contributions on adding new fraud detectors and extending the features of the toolbox. Some of the planned features are listed in TODO list.

If you use the toolbox in your project, please cite the paper below and the algorithms you used :

@inproceedings{dou2020robust,
  title={Robust Spammer Detection by Nash Reinforcement Learning},
  author={Dou, Yingtong and Ma, Guixiang and Yu, Philip S and Xie, Sihong},
  booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
  year={2020}
}

Useful Resources

Table of Contents

Installation

You can install UGFraud from pypi:

pip install UGFraud

or download and install from github:

git clone https://github.com/safe-graph/UGFraud.git
cd UGFraud
python setup.py install

Dataset

The demo data is not the intact data (rating and date information are missing). The rating information is only used in ZooBP demo. If you need the intact date to play demo, please email [email protected] to download the intact data from Yelp Spam Review Dataset. The metadata.gz file in /UGFraud/Yelp_Data/YelpChi includes:

  • user_id: 38063 number of users
  • product_id: 201 number of products
  • rating: from 1.0 (low) to 5.0 (high)
  • label: -1 is not spam, 1 is spam
  • date: data creation time

User Guide

Running the example code

You can find the implemented models in /UGFraud/Demo directory. For example, you can run fBox using:

python eval_fBox.py 

Running on your datasets

Have a look at the /UGFraud/Demo/data_to_network_graph.py to convert your data into the networkx graph.

In order to use your own data, you have to provide the following information at least:

  • a dict of dict:
'user_id':{
        'product_id':
                {
                'label': 1
                }
  • a dict of prior

You can use dict_to networkx(graph_dict) function from /Utils/helper.py file to convert your graph_dict into a networkx graph. For more details, please see data_to_network_graph.py.

The structure of code

The /UGFraud repository is organized as follows:

  • Demo/ contains the implemented models and the corresponding example code;
  • Detector/ contains the basic models;
  • Yelp_Data/ contains the necessary dataset files;
  • Utils/ contains the every help functions.

Implemented Models

Model Paper Venue Reference
SpEagle Collective Opinion Spam Detection: Bridging Review Networks and Metadata KDD 2015 BibTex
GANG GANG: Detecting Fraudulent Users in Online Social Networks via Guilt-by-Association on Directed Graph ICDM 2017 BibTex
fBox Spotting Suspicious Link Behavior with fBox: An Adversarial Perspective ICDM 2014 BibTex
Fraudar FRAUDAR: Bounding Graph Fraud in the Face of Camouflage KDD 2016 BibTex
ZooBP ZooBP: Belief Propagation for Heterogeneous Networks VLDB 2017 BibTex
SVD Singular value decomposition and least squares solutions - BibTex
Prior Evaluating suspicioueness based on prior information - -

Model Comparison

Model Application Graph Type Model Type
SpEagle Review Spam Tripartite MRF
GANG Social Sybil Bipartite MRF
fBox Social Fraudster Bipartite SVD
Fraudar Social Fraudster Bipartite Dense-block
ZooBP E-commerce Fraud Tripartite MRF
SVD Dimension Reduction Bipartite SVD

TODO List

  • Homogeneous graph implementation

How to Contribute

You are welcomed to contribute to this open-source toolbox. Currently, you can create issues or send email to [email protected] for inquiry.

You might also like...
OBBDetection: an oriented object detection toolbox modified from MMdetection
OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

A Python Library for Graph Outlier Detection (Anomaly Detection)
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

A semantic segmentation toolbox based on PyTorch

Introduction vedaseg is an open source semantic segmentation toolbox based on PyTorch. Features Modular Design We decompose the semantic segmentation

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.
mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms.

mbrl-lib is a toolbox for facilitating development of Model-Based Reinforcement Learning algorithms. It provides easily interchangeable modeling and planning components, and a set of utility functions that allow writing model-based RL algorithms with only a few lines of code.

Deep learning toolbox based on PyTorch for hyperspectral data classification.
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

MMFlow is an open source optical flow toolbox based on PyTorch
MMFlow is an open source optical flow toolbox based on PyTorch

Documentation: https://mmflow.readthedocs.io/ Introduction English | 简体中文 MMFlow is an open source optical flow toolbox based on PyTorch. It is a part

Comments
  •  cannot import name 'Detector' most likely due to a circular import

    cannot import name 'Detector' most likely due to a circular import

    Performing a simple import as outlined in testing.py

    import sys
    import os
    __file__ = "~/env/lib/python3.8/site-packages/UGFraud"
    sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
    from UGFraud.Demo.eval_fBox import *
    

    However, this produces the below error:

    ---------------------------------------------------------------------------
    ImportError                               Traceback (most recent call last)
    ~/env/lib/python3.8/site-packages/UGFraud in <module>
          3 __file__ = "~/env/lib/python3.8/site-packages/UGFraud"
          4 sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
    ----> 5 from UGFraud.Demo.eval_fBox import *
    
    ~/miniconda3/lib/python3.8/site-packages/UGFraud/__init__.py in <module>
          1 # -*- coding: utf-8 -*-
          2 
    ----> 3 from . import Detector
          4 from . import Utils
          5 
    
    ImportError: cannot import name 'Detector' from partially initialized module 'UGFraud' (most likely due to a circular import) (~/miniconda3/lib/python3.8/site-packages/UGFraud/__init__.py)
    
    opened by ragyibrahim 1
Releases(v0.1.0)
Owner
SafeGraph
Towards Secure Machine Learning on Graph Data
SafeGraph
HyperCube: Implicit Field Representations of Voxelized 3D Models

HyperCube: Implicit Field Representations of Voxelized 3D Models Authors: Magdalena Proszewska, Marcin Mazur, Tomasz Trzcinski, Przemysław Spurek [Pap

Magdalena Proszewska 3 Mar 09, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
An Evaluation of Generative Adversarial Networks for Collaborative Filtering.

An Evaluation of Generative Adversarial Networks for Collaborative Filtering. This repository was developed by Fernando B. Pérez Maurera. Fernando is

Fernando Benjamín PÉREZ MAURERA 0 Jan 19, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023
Extract MNIST handwritten digits dataset binary file into bmp images

MNIST-dataset-extractor Extract MNIST handwritten digits dataset binary file into bmp images More info at http://yann.lecun.com/exdb/mnist/ Dependenci

Omar Mostafa 6 May 24, 2021
Annotated, understandable, and visually interpretable PyTorch implementations of: VAE, BIRVAE, NSGAN, MMGAN, WGAN, WGANGP, LSGAN, DRAGAN, BEGAN, RaGAN, InfoGAN, fGAN, FisherGAN

Overview PyTorch 0.4.1 | Python 3.6.5 Annotated implementations with comparative introductions for minimax, non-saturating, wasserstein, wasserstein g

Shayne O'Brien 471 Dec 16, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
An official implementation of MobileStyleGAN in PyTorch

MobileStyleGAN: A Lightweight Convolutional Neural Network for High-Fidelity Image Synthesis Official PyTorch Implementation The accompanying videos c

Sergei Belousov 602 Jan 07, 2023
Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation

Unseen Object Clustering: Learning RGB-D Feature Embeddings for Unseen Object Instance Segmentation Introduction In this work, we propose a new method

NVIDIA Research Projects 132 Dec 13, 2022
This is an official implementation for "Video Swin Transformers".

Video Swin Transformer By Ze Liu*, Jia Ning*, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin and Han Hu. This repo is the official implementation of "V

Swin Transformer 981 Jan 03, 2023
Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples"

KSTER Code for our EMNLP 2021 paper "Learning Kernel-Smoothed Machine Translation with Retrieved Examples" [paper]. Usage Download the processed datas

jiangqn 23 Nov 24, 2022
EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation.

This repository contains data and code for our EMNLP 2021 paper Models and Datasets for Cross-Lingual Summarisation. Please contact me at

9 Oct 28, 2022
IAUnet: Global Context-Aware Feature Learning for Person Re-Identification

IAUnet This repository contains the code for the paper: IAUnet: Global Context-Aware Feature Learning for Person Re-Identification Ruibing Hou, Bingpe

30 Jul 14, 2022
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
ToFFi - Toolbox for Frequency-based Fingerprinting of Brain Signals

ToFFi Toolbox This repository contains "before peer review" version of the software related to the preprint of the publication ToFFi - Toolbox for Fre

4 Aug 31, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results from as little as 16 seconds of target data.

Neural Instrument Cloning In this project we combine techniques from neural voice cloning and musical instrument synthesis to achieve good results fro

Erland 127 Dec 23, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023