Python Auto-ML Package for Tabular Datasets

Overview
Tabular-AutoML

Tabular-AutoML

AutoML Package for tabular datasets

Tabular dataset tuning is now hassle free!

Run one liner command and get best tuning and processed dataset in a go.

Python Git

Used Python Libraries :
lightgbm numpy numpy numpy

Installation & Usage


  1. Create a Virtual Environment : Tutorial
  2. Clone the repository.
  3. Open the directory with cmd.
  4. Copy this command in terminal to install dependencies.
pip install -r requirements.txt
  1. Installing the requirements.txt may generate some error due to outdated MS Visual C++ Build. You can fix this problem using this.
  2. First check the parser variable that has to be passed with all customizations.
>>> python -m tab_automl.main --help
usage: main.py [-h] -d  -t  -tf  [-p] [-f] [-spd] [-sfd] [-sm]

automl hyper parameters

optional arguments:
  -h, --help            show this help message and exit
  -d , --data-source    File path
  -t , --problem-type   Problem Type , currently supporting *regression* or *classification*
  -tf , --target-feature
                        Target feature inside the data
  -p , --pre-proc       If data processing is required
  -f , --fet-eng        If feature engineering is required
  -spd , --save-proc-data
                        Save the processed data
  -sfd , --save-fet-data
                        Save the feature engineered data
  -sm , --save-model    Save the best trained model
  1. Now run the command with your custom data, problem type and target feature
>> # For Classification Problem >>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "classification" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"">
>>> # For Regression Problem
>>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "regression" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"

>>> # For Classification Problem
>>> python -m tab_automl.main -d "your custom data scource\custom_data.csv" -t "classification" -tf "your_custom_target_feature" -spd "true" -sfd "true" -sm "true"

Contributing Guidelines


  1. Coment on the issue on which you want to work.
  2. If you get assigned, fork the repository.
  3. Create a new branch which should be named on your github user_id , e.g. sagnik1511.
  4. Update the changes on that branch.
  5. Create a PR (Pull request) to the main branch of the parent repository.
  6. The PR title should named like this [Issue Number] Heading of the issue.
  7. Describe the changes you have done with proper reasons.

Contributors


  1. Sagnik Roy : sagnik1511

If you like the project, do

Also follow me on GitHub , Kaggle , LinkedIn

Thank You for Visiting :)

Owner
Sagnik Roy
Data Science Intern @ Argoid • Video Games & Machine Vision attracts me!
Sagnik Roy
The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation

PointNav-VO The Surprising Effectiveness of Visual Odometry Techniques for Embodied PointGoal Navigation Project Page | Paper Table of Contents Setup

Xiaoming Zhao 41 Dec 15, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
A Broader Picture of Random-walk Based Graph Embedding

Random-walk Embedding Framework This repository is a reference implementation of the random-walk embedding framework as described in the paper: A Broa

Zexi Huang 23 Dec 13, 2022
Experiments on continual learning from a stream of pretrained models.

Ex-model CL Ex-model continual learning is a setting where a stream of experts (i.e. model's parameters) is available and a CL model learns from them

Antonio Carta 6 Dec 04, 2022
PyTorch implementation of the Value Iteration Networks (VIN) (NIPS '16 best paper)

Value Iteration Networks in PyTorch Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. Value Iteration Networks. Neural Information Processing

LEI TAI 75 Nov 24, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
《DeepViT: Towards Deeper Vision Transformer》(2021)

DeepViT This repo is the official implementation of "DeepViT: Towards Deeper Vision Transformer". The repo is based on the timm library (https://githu

109 Dec 02, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
PyTorch implementation of "Transparency by Design: Closing the Gap Between Performance and Interpretability in Visual Reasoning"

Transparency-by-Design networks (TbD-nets) This repository contains code for replicating the experiments and visualizations from the paper Transparenc

David Mascharka 351 Nov 18, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Sign Language is detected in realtime using video sequences. Our approach involves MediaPipe Holistic for keypoints extraction and LSTM Model for prediction.

RealTime Sign Language Detection using Action Recognition Approach Real-Time Sign Language is commonly predicted using models whose architecture consi

Rishikesh S 15 Aug 20, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022

HSC4D: Human-centered 4D Scene Capture in Large-scale Indoor-outdoor Space Using Wearable IMUs and LiDAR. CVPR 2022 [Project page | Video] Getting sta

51 Nov 29, 2022
Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception, IROS 2021

For academic use only. Stereo Hybrid Event-Frame (SHEF) Cameras for 3D Perception Ziwei Wang, Liyuan Pan, Yonhon Ng, Zheyu Zhuang and Robert Mahony Th

Ziwei Wang 11 Jan 04, 2023
Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX.

snc4onnx Simple tool to combine(merge) onnx models. Simple Network Combine Tool for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools 1.

Katsuya Hyodo 8 Oct 13, 2022
Pytorch implementation of Deep Recursive Residual Network for Super Resolution (DRRN)

DRRN-pytorch This is an unofficial implementation of "Deep Recursive Residual Network for Super Resolution (DRRN)", CVPR 2017 in Pytorch. [Paper] You

yun_yang 192 Dec 12, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022