This repository contains all code and data for the Inside Out Visual Place Recognition task

Related tags

Deep LearningIOVPR
Overview

Inside Out Visual Place Recognition

This repository contains code and instructions to reproduce the results for the Inside Out Visual Place Recognition task and to retrieve the dataset Amsterdam-XXXL. Details are described in our [paper] and [supplementary material]

Dataset

Our dataset Amsterdam-XXXL consists of 3 partitions:

  • Outdoor-Ams: A set of 6.4M GPS annotated street-view images, meant for evaluation purposes but can be used for training as well.
  • Indoor-Ams: 2 sets of 500 indoor images each, that are used as queries during evaluation
  • Ams30k: A small set of GPS annotated street-view images, modelled after Pitts30k, that can be used for training purposes.

Contact [email protected] to get access to the dataset.

Code

This code is based on the code of 'Self-supervising Fine-grained Region Similarities for Large-scale Image Localization (SFRS)' [paper] from https://github.com/yxgeee/OpenIBL.

Main Modifications

  • It is able to process the dataset files for IOVPR.
  • It is able to evaluate on the large scale dataset Outdoor-Ams.
  • It uses Faiss for faster evaluation.

Requirements

  • Follow the installation instructions on https://github.com/yxgeee/OpenIBL/blob/master/docs/INSTALL.md
  • You can use the conda environment iovpr.yml as provided in this repo.
  • Training on Ams30k requires 4 GPUs. Evaluation on Ams30k can be done on 1 GPU. For evaluating on the full Outdoor-Ams, we used a node with 8 GeForce GTX 1080 Ti GPUs. A node with 4 GPUs is not sufficient and will cause memory issues.

Inside Out Data Augmentation

Data processing

In our pipeline we use real and gray layouts to train our models. To create real and gray lay outs we use the ADE20k dataset that can be obtained from http://sceneparsing.csail.mit.edu. This dataset is meant for semantic segmentation and therefore annotated on pixel level, with 150 semantic categories. We select indoor images from the train and validation set. Since 1 of the 150 semantic categories is 'window', we create binary masks of window and non-window pixels of each image. This binary mask is used to create real and gray layouts, as described in our paper. We create three sets of at least 10%, 20% and 30% window pixels.

Inference

During inference with gray layouts, we need a semantic segmentation network. For this, we use the code from https://github.com/CSAILVision/semantic-segmentation-pytorch. We use the pretrained UperNet50 model and finetune the model with the help of the ADE20k dataset on two output classes, window and non-window. The code in this link need some small modifications to finetune it on two classes.

Training and evaluating our models

Details on how to train the models can be found here: https://github.com/yxgeee/OpenIBL/blob/master/docs/REPRODUCTION.md. Only adapt the dataset(=Ams) and scale(=30k).

For evaluation, we use test_faiss.sh.

Ams30k:

./scripts/test_faiss.sh <PATH TO MODEL> ams 30k <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Outdoor-Ams:

./scripts/test_faiss.sh <PATH TO MODEL> ams outdoor <PATH TO STORE FEATURES> <FEATURE_FILE_NAME>

Note that this uses faiss_evaluators.py instead of the original evaluators.py.

License

'IOVPR' is released under the MIT license.

Citation

If you work on the Inside Out Visual Place Recognition or use our large scale dataset for regular Visual Place Recognition, please cite our paper.

@inproceedings{iovpr2021,
    title={Inside Out Visual Place Recognition},
    author={Sarah Ibrahimi and Nanne van Noord and Tim Alpherts and Marcel Worring},
    booktitle={BMVC}
    year={2021},
}

Acknowledgements

This repo is an extension of SFRS, which is inspired by open-reid, and part of the code is inspired by pytorch-NetVlad.

Official code for "InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization" (ICLR 2020, spotlight)

InfoGraph: Unsupervised and Semi-supervised Graph-Level Representation Learning via Mutual Information Maximization Authors: Fan-yun Sun, Jordan Hoffm

Fan-Yun Sun 232 Dec 28, 2022
AI Based Smart Exam Proctoring Package

AI Based Smart Exam Proctoring Package It takes image (base64) as input: Provide Output as: Detection of Mobile phone. Detection of More than 1 person

NARENDER KESWANI 3 Sep 09, 2022
Using deep learning model to detect breast cancer.

Breast-Cancer-Detection Breast cancer is the most frequent cancer among women, with around one in every 19 women at risk. The number of cases of breas

1 Feb 13, 2022
TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors

TACTO: A Fast, Flexible and Open-source Simulator for High-Resolution Vision-based Tactile Sensors This package provides a simulator for vision-based

Facebook Research 255 Dec 27, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
In the AI for TSP competition we try to solve optimization problems using machine learning.

AI for TSP Competition Goal In the AI for TSP competition we try to solve optimization problems using machine learning. The competition will be hosted

Paulo da Costa 11 Nov 27, 2022
YOLOv5 in PyTorch > ONNX > CoreML > TFLite

This repository represents Ultralytics open-source research into future object detection methods, and incorporates lessons learned and best practices evolved over thousands of hours of training and e

Ultralytics 34.1k Dec 31, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Neural Scene Flow Prior (NeurIPS 2021 spotlight)

Neural Scene Flow Prior Xueqian Li, Jhony Kaesemodel Pontes, Simon Lucey Will appear on Thirty-fifth Conference on Neural Information Processing Syste

Lilac Lee 85 Jan 03, 2023
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021)

Towards Flexible Blind JPEG Artifacts Removal (FBCNN, ICCV 2021) Jiaxi Jiang, Kai Zhang, Radu Timofte Computer Vision Lab, ETH Zurich, Switzerland 🔥

Jiaxi Jiang 282 Jan 02, 2023
Spatial Sparse Convolution Library

SpConv: Spatially Sparse Convolution Library PyPI Install Downloads CPU (Linux Only) pip install spconv CUDA 10.2 pip install spconv-cu102 CUDA 11.1 p

Yan Yan 1.2k Jan 07, 2023
CoRe: Contrastive Recurrent State-Space Models

CoRe: Contrastive Recurrent State-Space Models This code implements the CoRe model and reproduces experimental results found in Robust Robotic Control

Apple 21 Aug 11, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
李云龙二次元风格化!打滚卖萌,使用了animeGANv2进行了视频的风格迁移

李云龙二次元风格化!一键star、fork,你也可以生成这样的团长! 打滚卖萌求star求fork! 0.效果展示 视频效果前往B站观看效果最佳:李云龙二次元风格化: github开源repo:李云龙二次元风格化 百度AIstudio开源地址,一键fork即可运行: 李云龙二次元风格化!一键fork

oukohou 44 Dec 04, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Anti-UAV base on PaddleDetection

Paddle-Anti-UAV Anti-UAV base on PaddleDetection Background UAVs are very popular and we can see them in many public spaces, such as parks and playgro

Qingzhong Wang 2 Apr 20, 2022