Face Detection & Age Gender & Expression & Recognition

Overview

FaceLib:

  • use for Detection, Facial Expression, Age & Gender Estimation and Recognition with PyTorch
  • this repository works with CPU and GPU(Cuda)

Installation

  • Clone and install with this command:
    • with pip and automatic installs everything all you need

      • pip install git+https://github.com/sajjjadayobi/FaceLib.git
    • or with cloning the repo and install required packages

      • git clone https://github.com/sajjjadayobi/FaceLib.git
  • you can see the required packages in requirements.txt

How to use:

  • the simplest way is at example_notebook.ipynb
  • for low-level usage check out the following sections
  • if you have an NVIDIA GPU don't change the device param if not use cpu

1. Face Detection: RetinaFace

  • you can use these backbone networks: Resnet50, mobilenet
    • default weights and model is mobilenet and it will be automatically download
  • for more details, you can see the documentation
  • The following example illustrates the ease of use of this package:
 from facelib import FaceDetector
 detector = FaceDetector()
 boxes, scores, landmarks = detector.detect_faces(image)
  • FaceDetection live on your webcam
   from facelib import WebcamFaceDetector
   detector = WebcamFaceDetector()
   detector.run()

WiderFace Validation Performance on a single scale When using Mobilenet for backbone

Style easy medium hard
Pytorch (same parameter with Mxnet) 88.67% 87.09% 80.99%
Pytorch (original image scale) 90.70% 88.16% 73.82%
Mxnet(original image scale) 89.58% 87.11% 69.12%

2. Face Alignment: Similar Transformation

  • always use detect_align it gives you better performance
  • you can use this module like this:
    • detect_align instead of detect_faces
 from facelib import FaceDetector
 detector = FaceDetector()
 faces, boxes, scores, landmarks = detector.detect_align(image)
  • for more details read detect_image function documentation
  • let's see a few examples
Original Aligned & Resized Original Aligned & Resized
image image image image

3. Age & Gender Estimation:

  • I used UTKFace DataSet for Age & Gender Estimation
    • default weights and model is ShufflenetFull and it will be automatically download
  • you can use this module like this:
   from facelib import FaceDetector, AgeGenderEstimator

   face_detector = FaceDetector()
   age_gender_detector = AgeGenderEstimator()

   faces, boxes, scores, landmarks = face_detector.detect_align(image)
   genders, ages = age_gender_detector.detect(faces)
   print(genders, ages)
  • AgeGenderEstimation live on your webcam
   from facelib import WebcamAgeGenderEstimator
   estimator = WebcamAgeGenderEstimator()
   estimator.run()

4. Facial Expression Recognition:

  • Facial Expression Recognition using Residual Masking Network
    • default weights and model is densnet121 and it will be automatically download
  • face size must be (224, 224), you can fix it in FaceDetector init function with face_size=(224, 224)
  from facelib import FaceDetector, EmotionDetector
 
  face_detector = FaceDetector(face_size=(224, 224))
  emotion_detector = EmotionDetector()

  faces, boxes, scores, landmarks = face_detector.detect_align(image)
  list_of_emotions, probab = emotion_detector.detect_emotion(faces)
  print(list_of_emotions)
  • EmotionDetector live on your webcam
   from facelib import WebcamEmotionDetector
   detector = WebcamEmotionDetector()
   detector.run()
  • on my Webcam 🙂

Alt Text

5. Face Recognition: InsightFace

  • This module is a reimplementation of Arcface(paper), or Insightface(Github)

Pretrained Models & Performance

  • IR-SE50
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9952 0.9962 0.9504 0.9622 0.9557 0.9107 0.9386
  • Mobilefacenet
LFW(%) CFP-FF(%) CFP-FP(%) AgeDB-30(%) calfw(%) cplfw(%) vgg2_fp(%)
0.9918 0.9891 0.8986 0.9347 0.9402 0.866 0.9100

Prepare the Facebank (For testing over camera, video or image)

  • the faces images you want to detect it save them in this folder:

    Insightface/models/data/facebank/
              ---> person_1/
                  ---> img_1.jpg
                  ---> img_2.jpg
              ---> person_2/
                  ---> img_1.jpg
                  ---> img_2.jpg
    
  • you can save a new preson in facebank with 3 ways:

    • use add_from_webcam: it takes 4 images and saves them on facebank
       from facelib import add_from_webcam
       add_from_webcam(person_name='sajjad')
    • use add_from_folder: it takes a path with some images from just a person
       from facelib import add_from_folder
       add_from_folder(folder_path='./', person_name='sajjad')
    • or add faces manually (just face of a person not image of a person)
      • I don't suggest this

Using

  • default weights and model is mobilenet and it will be automatically download
    import cv2
    from facelib import FaceRecognizer, FaceDetector
    from facelib import update_facebank, load_facebank, special_draw, get_config
 
    conf = get_config()
    detector = FaceDetector()
    face_rec = FaceRecognizer(conf)
    face_rec.model.eval()
    
    # set True when you add someone new 
    update_facebank_for_add_new_person = False
    if update_facebank_for_add_new_person:
        targets, names = update_facebank(conf, face_rec.model, detector)
    else:
        targets, names = load_facebank(conf)

    image = cv2.imread(your_path)
    faces, boxes, scores, landmarks = detector.detect_align(image)
    results, score = face_rec.infer(conf, faces, targets)
    print(names[results.cpu()])
    for idx, bbox in enumerate(boxes):
        special_draw(image, bbox, landmarks[idx], names[results[idx]+1], score[idx])
  • Face Recognition live on your webcam
   from facelib import WebcamVerify
   verifier = WebcamVerify(update=True)
   verifier.run()
  • example of run this code:

image

Reference:

Owner
Sajjad Ayobi
Data Science Lover, a Little Geek
Sajjad Ayobi
Discovering Interpretable GAN Controls [NeurIPS 2020]

GANSpace: Discovering Interpretable GAN Controls Figure 1: Sequences of image edits performed using control discovered with our method, applied to thr

Erik Härkönen 1.7k Jan 03, 2023
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Transfer Learning Remote Sensing

Transfer_Learning_Remote_Sensing Simulation R codes for data generation and visualizations are in the folder simulation. Experiment: California Housin

2 Jun 21, 2022
A graphical Semi-automatic annotation tool based on labelImg and Yolov5

💕YOLOV5 semi-automatic annotation tool (Based on labelImg)

EricFang 247 Jan 05, 2023
Python package to generate image embeddings with CLIP without PyTorch/TensorFlow

imgbeddings A Python package to generate embedding vectors from images, using OpenAI's robust CLIP model via Hugging Face transformers. These image em

Max Woolf 81 Jan 04, 2023
Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images"

GANInversion_with_ConsecutiveImgs Official code for our ICCV paper: "From Continuity to Editability: Inverting GANs with Consecutive Images" https://a

QingyangXu 38 Dec 07, 2022
Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'.

COTREC Codes for CIKM'21 paper 'Self-Supervised Graph Co-Training for Session-based Recommendation'. Requirements: Python 3.7, Pytorch 1.6.0 Best Hype

Xin Xia 42 Dec 09, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Improving Object Detection by Label Assignment Distillation

Improving Object Detection by Label Assignment Distillation This is the official implementation of the WACV 2022 paper Improving Object Detection by L

Cybercore Co. Ltd 51 Dec 08, 2022
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
(ICCV 2021) Official code of "Dressing in Order: Recurrent Person Image Generation for Pose Transfer, Virtual Try-on and Outfit Editing."

Dressing in Order (DiOr) 👚 [Paper] 👖 [Webpage] 👗 [Running this code] The official implementation of "Dressing in Order: Recurrent Person Image Gene

Aiyu Cui 277 Dec 28, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent

Narya The Narya API allows you track soccer player from camera inputs, and evaluate them with an Expected Discounted Goal (EDG) Agent. This repository

Paul Garnier 121 Dec 30, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Learning kernels to maximize the power of MMD tests

Code for the paper "Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy" (arXiv:1611.04488; published at ICLR 2017), by Douga

Danica J. Sutherland 201 Dec 17, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022