VD-BERT: A Unified Vision and Dialog Transformer with BERT

Related tags

Deep LearningVD-BERT
Overview

VD-BERT: A Unified Vision and Dialog Transformer with BERT

PyTorch Code for the following paper at EMNLP2020:
Title: VD-BERT: A Unified Vision and Dialog Transformer with BERT [pdf]
Authors: Yue Wang, Shafiq Joty, Michael R. Lyu, Irwin King, Caiming Xiong, Steven C.H. Hoi
Institute: Salesforce Research and CUHK
Abstract
Visual dialog is a challenging vision-language task, where a dialog agent needs to answer a series of questions through reasoning on the image content and dialog history. Prior work has mostly focused on various attention mechanisms to model such intricate interactions. By contrast, in this work, we propose VD-BERT, a simple yet effective framework of unified vision-dialog Transformer that leverages the pretrained BERT language models for Visual Dialog tasks. The model is unified in that (1) it captures all the interactions between the image and the multi-turn dialog using a single-stream Transformer encoder, and (2) it supports both answer ranking and answer generation seamlessly through the same architecture. More crucially, we adapt BERT for the effective fusion of vision and dialog contents via visually grounded training. Without the need of pretraining on external vision-language data, our model yields new state of the art, achieving the top position in both single-model and ensemble settings (74.54 and 75.35 NDCG scores) on the visual dialog leaderboard.

Framework illustration
VD-BERT framework

Installation

Package: Pytorch 1.1; We alo provide our Dockerfile and YAML file for setting up experiments in Google Cloud Platform (GCP).
Data: you can obtain the VisDial data from here
Visual features: we provide bottom-up attention visual features of VisDial v1.0 on data/img_feats1.0/. If you would like to extract visual features for other images, please refer to this docker image. We provide the running script on data/visual_extract_code.py, which should be used inside the provided bottom-up-attention image.

Code explanation

vdbert: store the main training and testing python files, data loader code, metrics and the ensemble code;

pytorch_pretrained_bert: mainly borrow from the Huggingface's pytorch-transformers v0.4.0;

  • modeling.py: we modify or add two classes: BertForPreTrainingLossMask and BertForVisDialGen;
  • rank_loss.py: three ranking methods: ListNet, ListMLE, approxNDCG;

sh: shell scripts to run the experiments

pred: store two json files for best single-model (74.54 NDCG) and ensemble model (75.35 NDCG)

model: You can download a pretrained model from https://storage.cloud.google.com/sfr-vd-bert-research/v1.0_from_BERT_e30.bin

Running experiments

Below the running example scripts for pretraining, finetuning (including dense annotation), and testing.

  • Pretraining bash sh/pretrain_v1.0_mlm_nsp_g4.sh
  • Finetuning for discriminative bash sh/finetune_v1.0_disc_g4.sh
  • Finetuning for discriminative specifically on dense annotation bash sh/finetune_v1.0_disc_dense_g4.sh
  • Finetuning for generative bash sh/finetune_v1.0_gen_g4.sh
  • Testing for discriminative on validation bash sh/test_v1.0_disc_val.sh
  • Testing for generative on validation bash sh/test_v1.0_gen_val.sh
  • Testing for discriminative on test bash sh/test_v1.0_disc_test.sh

Notation: mlm: masked language modeling, nsp: next sentence prediction, disc: discriminative, gen: generative, g4: 4 gpus, dense: dense annotation

Citation

If you find the code useful in your research, please consider citing our paper:

@inproceedings{
    wang2020vdbert,
    title={VD-BERT: A Unified Vision and Dialog Transformer with BERT},
    author={Yue Wang, Shafiq Joty, Michael R. Lyu, Irwin King, Caiming Xiong, Steven C.H. Hoi},
    booktitle={Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020},
    year={2020},
}

License

This project is licensed under the terms of the MIT license.

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
DiAne is a smart fuzzer for IoT devices

Diane Diane is a fuzzer for IoT devices. Diane works by identifying fuzzing triggers in the IoT companion apps to produce valid yet under-constrained

seclab 28 Jan 04, 2023
In this project we predict the forest cover type using the cartographic variables in the training/test datasets.

Kaggle Competition: Forest Cover Type Prediction In this project we predict the forest cover type (the predominant kind of tree cover) using the carto

Marianne Joy Leano 1 Mar 15, 2022
For IBM Quantum Challenge 2021 (May 20 - 26)

IBM Quantum Challenge 2021 Introduction Commemorating the 40-year anniversary of the Physics of Computation conference, and 5-year anniversary of IBM

Qiskit Community 140 Jan 01, 2023
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021)

TDEER (WIP) Code For TDEER: An Efficient Translating Decoding Schema for Joint Extraction of Entities and Relations (EMNLP2021) Overview TDEER is an e

Alipay 6 Dec 17, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
CVPR 2021

Smoothing the Disentangled Latent Style Space for Unsupervised Image-to-image Translation [Paper] | [Poster] | [Codes] Yahui Liu1,3, Enver Sangineto1,

Yahui Liu 37 Sep 12, 2022
RepVGG: Making VGG-style ConvNets Great Again

This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge,the paper is RepVGG: Making VGG-style ConvNets Great Again

Ty Feng 62 May 21, 2022
The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text"

Finnish Dialect Identification The repository for our EMNLP 2021 paper "Finnish Dialect Identification: The Effect of Audio and Text". We present a te

Rootroo Ltd 2 Dec 25, 2021
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Official implementation of "Learning Not to Reconstruct" (BMVC 2021)

Official PyTorch implementation of "Learning Not to Reconstruct Anomalies" This is the implementation of the paper "Learning Not to Reconstruct Anomal

Marcella Astrid 13 Dec 04, 2022
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021)

MicroNet: Improving Image Recognition with Extremely Low FLOPs (ICCV 2021) A pytorch implementation of MicroNet. If you use this code in your research

Yunsheng Li 293 Dec 28, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

fcn - Fully Convolutional Networks Chainer implementation of Fully Convolutional Networks. Installation pip install fcn Inference Inference is done as

Kentaro Wada 218 Oct 27, 2022