BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

Related tags

Deep Learningbooksum
Overview

BOOKSUM: A Collection of Datasets for Long-form Narrative Summarization

Authors: Wojciech Kryściński, Nazneen Rajani, Divyansh Agarwal, Caiming Xiong, Dragomir Radev

Introduction

The majority of available text summarization datasets include short-form source documents that lack long-range causal and temporal dependencies, and often contain strong layout and stylistic biases. While relevant, such datasets will offer limited challenges for future generations of text summarization systems. We address these issues by introducing BookSum, a collection of datasets for long-form narrative summarization. Our dataset covers source documents from the literature domain, such as novels, plays and stories, and includes highly abstractive, human written summaries on three levels of granularity of increasing difficulty: paragraph-, chapter-, and book-level. The domain and structure of our dataset poses a unique set of challenges for summarization systems, which include: processing very long documents, non-trivial causal and temporal dependencies, and rich discourse structures. To facilitate future work, we trained and evaluated multiple extractive and abstractive summarization models as baselines for our dataset.

Paper link: https://arxiv.org/abs/2105.08209

Table of Contents

  1. Updates
  2. Citation
  3. Legal Note
  4. License
  5. Usage
  6. Get Involved

Updates

4/15/2021

Initial commit

Citation

@article{kryscinski2021booksum,
      title={BookSum: A Collection of Datasets for Long-form Narrative Summarization}, 
      author={Wojciech Kry{\'s}ci{\'n}ski and Nazneen Rajani and Divyansh Agarwal and Caiming Xiong and Dragomir Radev},
      year={2021},
      eprint={2105.08209},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Legal Note

By downloading or using the resources, including any code or scripts, shared in this code repository, you hereby agree to the following terms, and your use of the resources is conditioned on and subject to these terms.

  1. You may only use the scripts shared in this code repository for research purposes. You may not use or allow others to use the scripts for any other purposes and other uses are expressly prohibited.
  2. You will comply with all terms and conditions, and are responsible for obtaining all rights, related to the services you access and the data you collect.
  3. We do not make any representations or warranties whatsoever regarding the sources from which data is collected. Furthermore, we are not liable for any damage, loss or expense of any kind arising from or relating to your use of the resources shared in this code repository or the data collected, regardless of whether such liability is based in tort, contract or otherwise.

License

The code is released under the BSD-3 License (see LICENSE.txt for details).

Usage

1. Chapterized Project Guteberg Data

The chapterized book text from Gutenberg, for the books we use in our work, has been made available through a public GCP bucket. It can be fetched using:

gsutil cp gs://sfr-books-dataset-chapters-research/all_chapterized_books.zip .

or downloaded directly here.

2. Data Collection

Data collection scripts for the summary text are organized by the different sources that we use summaries from. Note: At the time of collecting the data, all links in literature_links.tsv were working for the respective sources.

For each data source, run get_works.py to first fetch the links for each book, and then run get_summaries.py to get the summaries from the collected links.

python scripts/data_collection/cliffnotes/get_works.py
python scripts/data_collection/cliffnotes/get_summaries.py

3. Data Cleaning

Data Cleaning is performed through the following steps:

First script for some basic cleaning operations, like removing parentheses, links etc from the summary text

python scripts/data_cleaning_scripts/basic_clean.py

We use intermediate alignments in summary_chapter_matched_all_sources.jsonl to identify which summaries are separable, and separates them, creating new summaries (eg. Chapters 1-3 summary separated into 3 different files - Chapter 1 summary, Chapter 2 summary, Chapter 3 summary)

python scripts/data_cleaning_scripts/split_aggregate_chaps_all_sources.py

Lastly, our final cleaning script using various regexes to separate out analysis/commentary text, removes prefixes, suffixes etc.

python scripts/data_cleaning_scripts/clean_summaries.py

Data Alignments

Generating paragraph alignments from the chapter-level-summary-alignments, is performed individually for the train/test/val splits:

Gather the data from the summaries and book chapters into a single jsonl

python paragraph-level-summary-alignments/gather_data.py

Generate alignments of the paragraphs with sentences from the summary using the bi-encoder paraphrase-distilroberta-base-v1

python paragraph-level-summary-alignments/align_data_bi_encoder_paraphrase.py

Aggregate the generated alignments for cases where multiple sentences from chapter-summaries are matched to the same paragraph from the book

python paragraph-level-summary-alignments/aggregate_paragraph_alignments_bi_encoder_paraphrase.py

Troubleshooting

  1. The web archive links we collect the summaries from can often be unreliable, taking a long time to load. One way to fix this is to use higher sleep timeouts when one of the links throws an exception, which has been implemented in some of the scripts.
  2. Some links that constantly throw errors are aggregated in a file called - 'section_errors.txt'. This is useful to inspect which links are actually unavailable and re-running the data collection scripts for those specific links.

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
FedTorch is an open-source Python package for distributed and federated training of machine learning models using PyTorch distributed API

FedTorch is a generic repository for benchmarking different federated and distributed learning algorithms using PyTorch Distributed API.

Machine Learning and Optimization Lab @PennState 136 Dec 23, 2022
[NeurIPS 2021] Low-Rank Subspaces in GANs

Low-Rank Subspaces in GANs Figure: Image editing results using LowRankGAN on StyleGAN2 (first three columns) and BigGAN (last column). Low-Rank Subspa

112 Dec 28, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
Meta Representation Transformation for Low-resource Cross-lingual Learning

MetaXL: Meta Representation Transformation for Low-resource Cross-lingual Learning This repo hosts the code for MetaXL, published at NAACL 2021. [Meta

Microsoft 36 Aug 17, 2022
Repository for the semantic WMI loss

Installation: pip install -e . Installing DL2: First clone DL2 in a separate directory and install it using the following commands: git clone https:/

Nick Hoernle 4 Sep 15, 2022
Open source code for Paper "A Co-Interactive Transformer for Joint Slot Filling and Intent Detection"

A Co-Interactive Transformer for Joint Slot Filling and Intent Detection This repository contains the PyTorch implementation of the paper: A Co-Intera

67 Dec 05, 2022
Learning Pixel-level Semantic Affinity with Image-level Supervision for Weakly Supervised Semantic Segmentation, CVPR 2018

Learning Pixel-level Semantic Affinity with Image-level Supervision This code is deprecated. Please see https://github.com/jiwoon-ahn/irn instead. Int

Jiwoon Ahn 337 Dec 15, 2022
Writeups for the challenges from DownUnderCTF 2021

cloud Challenge Author Difficulty Release Round Bad Bucket Blue Alder easy round 1 Not as Bad Bucket Blue Alder easy round 1 Lost n Found Blue Alder m

DownUnderCTF 161 Dec 31, 2022
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings

When Does Pretraining Help? Assessing Self-Supervised Learning for Law and the CaseHOLD Dataset of 53,000+ Legal Holdings This is the repository for t

RegLab 39 Jan 07, 2023
Bot developed in Python that automates races in pegaxy.

español | português About it: This is a fork from pega-racing-bot. This bot, developed in Python, is to automate races in pegaxy. The game developers

4 Apr 08, 2022
Minimal diffusion models - Minimal code and simple experiments to play with Denoising Diffusion Probabilistic Models (DDPMs)

Minimal code and simple experiments to play with Denoising Diffusion Probabilist

Rithesh Kumar 16 Oct 06, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
An implementation of an abstract algebra for music tones (pitches).

nbdev template Use this template to more easily create your nbdev project. If you are using an older version of this template, and want to upgrade to

Open Music Kit 0 Oct 10, 2022
A tool to estimate time varying instantaneous reproduction number during epidemics

EpiEstim A tool to estimate time varying instantaneous reproduction number during epidemics. It is described in the following paper: @article{Cori2013

MRC Centre for Global Infectious Disease Analysis 78 Dec 19, 2022
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
🔪 Elimination based Lightweight Neural Net with Pretrained Weights

ELimNet ELimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task Removed top layers from pretrained Efficient

snoop2head 4 Jul 12, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset

Lighting the Darkness in the Deep Learning Era: A Survey, An Online Platform, A New Dataset This repository provides a unified online platform, LoLi-P

Chongyi Li 457 Jan 03, 2023