Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Overview

Evaluating the Factual Consistency of Abstractive Text Summarization

Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher

Introduction

Currently used metrics for assessing summarization algorithms do not account for whether summaries are factually consistent with source documents. We propose a weakly-supervised, model-based approach for verifying factual consistency and identifying conflicts between source documents and a generated summary. Training data is generated by applying a series of rule-based transformations to the sentences of source documents. The factual consistency model is then trained jointly for three tasks:

  1. identify whether sentences remain factually consistent after transformation,
  2. extract a span in the source documents to support the consistency prediction,
  3. extract a span in the summary sentence that is inconsistent if one exists. Transferring this model to summaries generated by several state-of-the art models reveals that this highly scalable approach substantially outperforms previous models, including those trained with strong supervision using standard datasets for natural language inference and fact checking. Additionally, human evaluation shows that the auxiliary span extraction tasks provide useful assistance in the process of verifying factual consistency.

Paper link: https://arxiv.org/abs/1910.12840

Table of Contents

  1. Updates
  2. Citation
  3. License
  4. Usage
  5. Get Involved

Updates

1/27/2020

Updated manually annotated data files - fixed filepaths in misaligned examples.

Updated model checkpoint files - recomputed evaluation metrics for fixed examples.

Citation

@article{kryscinskiFactCC2019,
  author    = {Wojciech Kry{\'s}ci{\'n}ski and Bryan McCann and Caiming Xiong and Richard Socher},
  title     = {Evaluating the Factual Consistency of Abstractive Text Summarization},
  journal   = {arXiv preprint arXiv:1910.12840},
  year      = {2019},
}

License

The code is released under the BSD-3 License (see LICENSE.txt for details), but we also ask that users respect the following:

This software should not be used to promote or profit from violence, hate, and division, environmental destruction, abuse of human rights, or the destruction of people's physical and mental health.

Usage

Code repository uses Python 3. Prior to running any scripts please make sure to install required Python packages listed in the requirements.txt file.

Example call: pip3 install -r requirements.txt

Training and Evaluation Datasets

Generated training data can be found here.

Manually annotated validation and test data can be found here.

Both generated and manually annotated datasets require pairing with the original CNN/DailyMail articles.

To recreate the datasets follow the instructions:

  1. Download CNN Stories and Daily Mail Stories from https://cs.nyu.edu/~kcho/DMQA/
  2. Create a cnndm directory and unpack downloaded files into the directory
  3. Download and unpack FactCC data (do not rename directory)
  4. Run the pair_data.py script to pair the data with original articles

Example call:

python3 data_pairing/pair_data.py <dir-with-factcc-data> <dir-with-stories>

Generating Data

Synthetic training data can be generated using code available in the data_generation directory.

The data generation script expects the source documents input as one jsonl file, where each source document is embedded in a separate json object. The json object is required to contain an id key which stores an example id (uniqness is not required), and a text field that stores the text of the source document.

Certain transformations rely on NER tagging, thus for best results use source documents with original (proper) casing.

The following claim augmentations (transformations) are available:

  • backtranslation - Paraphrasing claim via backtranslation (requires Google Translate API key; costs apply)
  • pronoun_swap - Swapping a random pronoun in the claim
  • date_swap - Swapping random date/time found in the claim with one present in the source article
  • number_swap - Swapping random number found in the claim with one present in the source article
  • entity_swap - Swapping random entity name found in the claim with one present in the source article
  • negation - Negating meaning of the claim
  • noise - Injecting noise into the claim sentence

For a detailed description of available transformations please refer to Section 3.1 in the paper.

To authenticate with the Google Cloud API follow these instructions.

Example call:

python3 data_generation/create_data.py <source-data-file> [--augmentations list-of-augmentations]

Model Code

FactCC and FactCCX models can be trained or initialized from a checkpoint using code available in the modeling directory.

Quickstart training, fine-tuning, and evaluation scripts are shared in the scripts directory. Before use make sure to update *_PATH variables with appropriate, absolute paths.

To customize training or evaluation settings please refer to the flags in the run.py file.

To utilize Weights&Biases dashboards login to the service using the following command: wandb login <API KEY>.

Trained FactCC model checkpoint can be found here.

Trained FactCCX model checkpoint can be found here.

IMPORTANT: Due to data pre-processing, the first run of training or evaluation code on a large dataset can take up to a few hours before the actual procedure starts.

Running on other data

To run pretrained FactCC or FactCCX models on your data follow the instruction:

  1. Download pre-trained model checkpoint, linked above
  2. Prepare your data in jsonl format. Each example should be a separate json object with id, text, claim keys representing example id, source document, and claim sentence accordingly. Name file as data-dev.jsonl
  3. Update corresponding *-eval.sh script

Get Involved

Please create a GitHub issue if you have any questions, suggestions, requests or bug-reports. We welcome PRs!

Owner
Salesforce
A variety of vendor agnostic projects which power Salesforce
Salesforce
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
High-performance moving least squares material point method (MLS-MPM) solver.

High-Performance MLS-MPM Solver with Cutting and Coupling (CPIC) (MIT License) A Moving Least Squares Material Point Method with Displacement Disconti

Yuanming Hu 2.2k Dec 31, 2022
An exploration of log domain "alternative floating point" for hardware ML/AI accelerators.

This repository contains the SystemVerilog RTL, C++, HLS (Intel FPGA OpenCL to wrap RTL code) and Python needed to reproduce the numerical results in

Facebook Research 373 Dec 31, 2022
PyTorch code for JEREX: Joint Entity-Level Relation Extractor

JEREX: "Joint Entity-Level Relation Extractor" PyTorch code for JEREX: "Joint Entity-Level Relation Extractor". For a description of the model and exp

LAVIS - NLP Working Group 50 Dec 01, 2022
A Demo server serving Bert through ONNX with GPU written in Rust with <3

Demo BERT ONNX server written in rust This demo showcase the use of onnxruntime-rs on BERT with a GPU on CUDA 11 served by actix-web and tokenized wit

Xavier Tao 28 Jan 01, 2023
Neural Radiance Fields Using PyTorch

This project is a PyTorch implementation of Neural Radiance Fields (NeRF) for reproduction of results whilst running at a faster speed.

Vedant Ghodke 1 Feb 11, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
Train neural network for semantic segmentation (deep lab V3) with pytorch in less then 50 lines of code

Train neural network for semantic segmentation (deep lab V3) with pytorch in 50 lines of code Train net semantic segmentation net using Trans10K datas

17 Dec 19, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
Semi-Supervised Learning, Object Detection, ICCV2021

End-to-End Semi-Supervised Object Detection with Soft Teacher By Mengde Xu*, Zheng Zhang*, Han Hu, Jianfeng Wang, Lijuan Wang, Fangyun Wei, Xiang Bai,

Microsoft 789 Dec 27, 2022
Back to Event Basics: SSL of Image Reconstruction for Event Cameras

Back to Event Basics: SSL of Image Reconstruction for Event Cameras Minimal code for Back to Event Basics: Self-Supervised Learning of Image Reconstru

TU Delft 42 Dec 26, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022
Official Repsoitory for "Activate or Not: Learning Customized Activation." [CVPR 2021]

CVPR 2021 | Activate or Not: Learning Customized Activation. This repository contains the official Pytorch implementation of the paper Activate or Not

184 Dec 27, 2022