ACV is a python library that provides explanations for any machine learning model or data.

Overview

Active Coalition of Variables (ACV):

ACV is a python library that aims to explain any machine learning models or data.

  • It gives local rule-based explanations for any model or data.
  • It provides a better estimation of Shapley Values for tree-based model (more accurate than path-dependent TreeSHAP). It also proposes new Shapley Values that have better local fidelity.

We can regroup the different explanations in two groups: Agnostic Explanations and Tree-based Explanations.

See the papers here.

Installation

Requirements

Python 3.6+

OSX: ACV uses Cython extensions that need to be compiled with multi-threading support enabled. The default Apple Clang compiler does not support OpenMP. To solve this issue, obtain the lastest gcc version with Homebrew that has multi-threading enabled: see for example pysteps installation for OSX.

Windows: Install MinGW (a Windows distribution of gcc) or Microsoft’s Visual C

Install the acv package:

$ pip install acv-exp

A. Agnostic explanations

The Agnostic approaches explain any data (X, Y) or model (X, f(X)) using the following explanation methods:

  • Same Decision Probability (SDP) and Sufficient Explanations
  • Sufficient Rules

See the paper Consistent Sufficient Explanations and Minimal Local Rules for explaining regression and classification models for more details.

I. First, we need to fit our explainer (ACXplainers) to input-output of the data (X, Y) or model (X, f(X)) if we want to explain the data or the model respectively.

from acv_explainers import ACXplainer

# It has the same params as a Random Forest, and it should be tuned to maximize the performance.  
acv_xplainer = ACXplainer(classifier=True, n_estimators=50, max_depth=5)
acv_xplainer.fit(X_train, y_train)

roc = roc_auc_score(acv_xplainer.predict(X_test), y_test)

II. Then, we can load all the explanations in a webApp as follow:

import acv_app
import os

# compile the ACXplainer
acv_app.compile_ACXplainers(acv_xplainer, X_train, y_train, X_test, y_test, path=os.getcwd())

# Launch the webApp
acv_app.run_webapp(pickle_path=os.getcwd())

Capture d’écran de 2021-11-03 19-50-12

III. Or we can compute each explanation separately as follow:

Same Decision Probability (SDP)

The main tool of our explanations is the Same Decision Probability (SDP). Given , the same decision probability of variables is the probabilty that the prediction remains the same when we fixed variables or when the variables are missing.

  • How to compute ?
sdp = acv_xplainer.compute_sdp_rf(X, S, data_bground) # data_bground is the background dataset that is used for the estimation. It should be the training samples.

Minimal Sufficient Explanations

The Sufficient Explanations is the Minimal Subset S such that fixing the values permit to maintain the prediction with high probability . See the paper here for more details.

  • How to compute the Minimal Sufficient Explanation ?

    The following code return the Sufficient Explanation with minimal cardinality.

sdp_importance, min_sufficient_expl, size, sdp = acv_xplainer.importance_sdp_rf(X, y, X_train, y_train, pi_level=0.9)
  • How to compute all the Sufficient Explanations ?

    Since the Minimal Sufficient Explanation may not be unique for a given instance, we can compute all of them.

sufficient_expl, sdp_expl, sdp_global = acv_xplainer.sufficient_expl_rf(X, y, X_train, y_train, pi_level=0.9)

Local Explanatory Importance

For a given instance, the local explanatory importance of each variable corresponds to the frequency of apparition of the given variable in the Sufficient Explanations. See the paper here for more details.

  • How to compute the Local Explanatory Importance ?
lximp = acv_xplainer.compute_local_sdp(d=X_train.shape[1], sufficient_expl)

Local rule-based explanations

For a given instance (x, y) and its Sufficient Explanation S such that , we compute a local minimal rule which contains x such that every observation z that satisfies this rule has . See the paper here for more details

  • How to compute the local rule explanations ?
sdp, rules, _, _, _ = acv_xplainer.compute_sdp_maxrules(X, y, data_bground, y_bground, S) # data_bground is the background dataset that is used for the estimation. It should be the training samples.

B. Tree-based explanations

ACV gives Shapley Values explanations for XGBoost, LightGBM, CatBoostClassifier, scikit-learn and pyspark tree models. It provides the following Shapley Values:

  • Classic local Shapley Values (The value function is the conditional expectation )
  • Active Shapley values (Local fidelity and Sparse by design)
  • Swing Shapley Values (The Shapley values are interpretable by design) (Coming soon)

In addition, we use the coalitional version of SV to properly handle categorical variables in the computation of SV.

See the papers here

To explain the tree-based models above, we need to transform our model into ACVTree.

from acv_explainers import ACVTree

forest = XGBClassifier() # or any Tree Based models
#...trained the model

acvtree = ACVTree(forest, data_bground) # data_bground is the background dataset that is used for the estimation. It should be the training samples.

Accurate Shapley Values

sv = acvtree.shap_values(X)

Note that it provides a better estimation of the tree-path dependent of TreeSHAP when the variables are dependent.

Accurate Shapley Values with encoded categorical variables

Let assume we have a categorical variable Y with k modalities that we encoded by introducing the dummy variables . As shown in the paper, we must take the coalition of the dummy variables to correctly compute the Shapley values.

# cat_index := list[list[int]] that contains the column indices of the dummies or one-hot variables grouped 
# together for each variable. For example, if we have only 2 categorical variables Y, Z 
# transformed into [Y_0, Y_1, Y_2] and [Z_0, Z_1, Z_2]

cat_index = [[0, 1, 2], [3, 4, 5]]
forest_sv = acvtree.shap_values(X, C=cat_index)

In addition, we can compute the SV given any coalitions. For example, let assume we have 10 variables and we want the following coalition

coalition = [[0, 1, 2], [3, 4], [5, 6]]
forest_sv = acvtree.shap_values(X, C=coalition)

How to compute for tree-based classifier ?

Recall that the is the probability that the prediction remains the same when we fixed variables given the subset S.

sdp = acvtree.compute_sdp_clf(X, S, data_bground) # data_bground is the background dataset that is used for the estimation. It should be the training samples.

How to compute the Sufficient Coalition and the Global SDP importance for tree-based classifier ?

Recall that the Minimal Sufficient Explanations is the Minimal Subset S such that fixing the values permit to maintain the prediction with high probability .

sdp_importance, sdp_index, size, sdp = acvtree.importance_sdp_clf(X, data_bground) # data_bground is the background dataset that is used for the estimation. It should be the training samples.

Active Shapley values

The Active Shapley values is a SV based on a new game defined in the Paper (Accurate and robust Shapley Values for explaining predictions and focusing on local important variables such that null (non-important) variables has zero SV and the "payout" is fairly distribute among active variables.

  • How to compute Active Shapley values ?
import acv_explainers

# First, we need to compute the Active and Null coalition
sdp_importance, sdp_index, size, sdp = acvtree.importance_sdp_clf(X, data_bground)
S_star, N_star = acv_explainers.utils.get_active_null_coalition_list(sdp_index, size)

# Then, we used the active coalition found to compute the Active Shapley values.
forest_asv_adap = acvtree.shap_values_acv_adap(X, C, S_star, N_star, size)
Remarks for tree-based explanations:

If you don't want to use multi-threaded (due to scaling or memory problem), you have to add "_nopa" to each function (e.g. compute_sdp_clf ==> compute_sdp_clf_nopa). You can also compute the different values needed in cache by setting cache=True in ACVTree initialization e.g. ACVTree(model, data_bground, cache=True).

Examples and tutorials (a lot more to come...)

We can find a tutorial of the usages of ACV in demo_acv and the notebooks below demonstrate different use cases for ACV. Look inside the notebook directory of the repository if you want to try playing with the original notebooks yourself.

Comments
  • acvtree.global_sdp_importance_clf error with LightGBM, but not RandomForest

    acvtree.global_sdp_importance_clf error with LightGBM, but not RandomForest

    Hello,

    First of all, kudos for this lib, it's amazing how many models you already support (sklearn, skopt, {xgb,cat,light}gbm).

    My test works for RandomForest, with basically the same current performance limitations. Having looked at the code, maybe the C extension (cext_acv) which should speed things up is not yet implemented.

    Basically, the very same run of global_sdp_importance_clf on a subset (due to the performance issue) which works with sklearn RandomForest fails with LightGBM.

    Since the syntax changed a little from the previous lib, I followed one notebook example for the C parameter (maybe I'm wrong there).

    n = 100
    C = [[]]
    # columns = list of features
    # already fitted model of type "lightgbm.sklearn.LGBMClassifier"
    acvtree = ACVTree(model, X_train[:n].values)
    sdp_importance_m, sdp_importance, sdp_importance_proba, sdp_importance_coal_count, sdp_importance_variable_count = acvtree.global_sdp_importance_clf(data=X_test[:n].values[y_test[:n]<1], data_bground=X_train[:n].values, columns_names=columns, global_proba=0.9, decay=0.7, threshold=0.6, proba=0.9,verbose=1,C=C, verbose=0)
    

    leading to this error

    ~/.virtualenvs/venv/lib/python3.8/site-packages/acv_explainers/acv_tree.py in global_sdp_importance_clf(self, data, data_bground, columns_names, global_proba, decay, threshold, proba, C, verbose)
         64                           proba, C, verbose):
         65
    ---> 66         return global_sdp_importance(data, data_bground, columns_names, global_proba, decay, threshold,
         67                           proba, C, verbose, self.compute_sdp_clf, self.predict)
         68
    
    ~/.virtualenvs/venv/lib/python3.8/site-packages/acv_explainers/py_acv.py in global_sdp_importance(data, data_bground, columns_names, global_proba, decay, threshold, proba, C, verbose, cond_func, predict)
        475             fx = predict(np.expand_dims(ind, 0))[0]
        476
    --> 477         local_sdp(ind, fx, threshold, proba, index, data_bground, final_coal, decay,
        478                   C=C, verbose=verbose, cond_func=cond_func)
        479
    
    ~/.virtualenvs/venv/lib/python3.8/site-packages/acv_explainers/py_acv.py in local_sdp(x, f, threshold, proba, index, data, final_coal, decay, C, verbose, cond_func)
        405                 if c not in C_off:
        406
    --> 407                     value = cond_func(x, f, threshold, S=chain_l(c), data=data)
        408                     c_value[size][str(c)] = value
        409
    
    ~/.virtualenvs/venv/lib/python3.8/site-packages/acv_explainers/acv_tree.py in compute_sdp_clf(self, x, fx, tx, S, data)
         37
         38     def compute_sdp_clf(self, x, fx, tx, S, data):
    ---> 39         sdp = cond_sdp_forest_clf(x, fx, tx, self.trees, S, data=data)
         40         return sdp
         41
    
    ~/.virtualenvs/venv/lib/python3.8/site-packages/acv_explainers/py_acv.py in cond_sdp_forest_clf(x, fx, tx, forest, S, data)
        239
        240         s = (mean_forest['all'] - mean_forest['down']) / (mean_forest['up'] - mean_forest['down'])
    --> 241         sdp += 0 * (s[int(fx)] < 0) + 1 * (s[int(fx)] > 1) + s[int(fx)] * (0 <= s[int(fx)] <= 1)
        242     # sdp = 0 * (sdp[int(fx)] < 0) + 1 * (sdp[int(fx)] > 1) + sdp[int(fx)] * (0 <= sdp[int(fx)] <= 1)
        243     return sdp/n_trees
    
    IndexError: index 1 is out of bounds for axis 0 with size 1
    

    BTW since you seem interested in multi-arm bandit, you may find this hyper-parameter search library interesting. It's a multi-armed bandit bayesian optimizer based on the gaussian process.

    Thanks!

    opened by flamby 2
  • ValueError: Buffer dtype mismatch, expected 'long' but got 'long long'

    ValueError: Buffer dtype mismatch, expected 'long' but got 'long long'

    If I try to run the code in the Python Notebook and change it into something a python script can run, the code has the error I wrote in the title when calculating the SDP using compute_sdp_clf. I believe this has something to do with the Cython file, in line 238 something has to be changed, maybe long into long long?

    opened by justinthecoder 1
  • Cheers

    Cheers

    I have no actual issue at the moment but just finished reading the papers and I wanted to offer my praise for your work. It is great stuff.

    I am also very much looking forward to the implementation of Swing Shapley Values for tree-based models.

    I may have some real world tests/comparisons between your methods and classic SHAP results I can at least partially share in a few months .

    Thank you again for sharing your work!

    opened by CanML 0
  • Getting `clang: error: unsupported option '-fopenmp'` when installing with pip on M1 mac

    Getting `clang: error: unsupported option '-fopenmp'` when installing with pip on M1 mac

    Hi!

    I'm eager to try this library out. Unfortunately I get an error upon installation:

    clang: error: unsupported option '-fopenmp'
    
    • I updated llvm using homebrew (did not solve the problem).

    • clang --help | grep fopenmp returns

        -fopenmp                Parse OpenMP pragmas and generate parallel code.
      

    so it's just strange that this argument is not recognized during installation.

    Any idea how to solve this?

    My specs are:

    Apple M1 Pro (2021)
    MacOS 12.5.1
    Python 3.10
    
    opened by ulfaslakprecis 1
  • TypeError: unhashable type: 'list' in compute_local_sdp function

    TypeError: unhashable type: 'list' in compute_local_sdp function

    Hello,

    Thank you for a great package. I've been trying out the code on the front page. I ran into an issue when I was trying to generate the local explanatory importance scores and I wondered if you might be able to help? I got the following error:


    TypeError                                 Traceback (most recent call last)
    Input In [24], in <cell line: 1>()
    ----> 1 lximp = acv_explainer.compute_local_sdp(X_train.shape[1], sufficient_expl)
    
    File ~/.local/lib/python3.9/site-packages/acv_explainers/acv_agnosticX.py:627, in ACXplainer.compute_local_sdp(d, sufficient_coal)
        625 flat = [item for sublist in sufficient_coal for item in sublist]
        626 flat = pd.Series(flat)
    --> 627 flat = dict(flat.value_counts() / len(sufficient_coal))
        628 local_sdp = np.zeros(d)
        629 for key in flat.keys():
    
    TypeError: unhashable type: 'list'
    

    I tried to manually calculate the LEI based on your paper, since it's a just a simple percentage of how many SE in the A-SE a feature appears in, but I also found that the sufficient_expl list has negative values? Do they indicate a feature as well? Worth noting that sometimes the only result I get for the A-SE is -1.

    opened by Mythreyi-V 1
  • Doesn't work with Windows

    Doesn't work with Windows

    I don't know if skranger is required 100%, but there aren't wheels for it, so it looks it can't be installed https://github.com/crflynn/skranger/issues/53. I am uncertain if there is some other way to test it, for now, I'm going to try it with https://github.com/ml-tooling/ml-workspace but not sure how to use it on Windows.

    opened by set92 3
Releases(v1.2.3)
Owner
Salim Amoukou
Salim Amoukou
This is an official implementation of the High-Resolution Transformer for Dense Prediction.

High-Resolution Transformer for Dense Prediction Introduction This is the official implementation of High-Resolution Transformer (HRT). We present a H

HRNet 403 Dec 13, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Official Implementation for "StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery" (ICCV 2021 Oral)

StyleCLIP: Text-Driven Manipulation of StyleGAN Imagery (ICCV 2021 Oral) Run this model on Replicate Optimization: Global directions: Mapper: Check ou

3.3k Jan 05, 2023
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented at RAI 2021.

Can Active Learning Preemptively Mitigate Fairness Issues? Code for the paper "Can Active Learning Preemptively Mitigate Fairness Issues?" presented a

ElementAI 7 Aug 12, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
METS/ALTO OCR enhancing tool by the National Library of Luxembourg (BnL)

Nautilus-OCR The National Library of Luxembourg (BnL) started its first initiative in digitizing newspapers, with layout recognition and OCR on articl

National Library of Luxembourg 36 Dec 05, 2022
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022