Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

Overview

Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning

My MSc Computer Science research project, titled 'Predicting Keystrokes using an Audio Side-Channel Attack and Machine Learning'. The findings and thesis conducted from this research can be found here.

Audio side-channel attacks are increasingly becoming a security concern regarding ‘keystroke snooping’, in which an attack can utilise the emanation of a keystroke to predict a specific key (or contextual passage of keys) being pressed. This can potentially be used to gather a users’ private data if keystroke audio is able to be discretely captured.

In this project, Python code has been created to analayse the acoustic emanation and geometric features of a keystroke signal, and this information is used to provide enough information to accurately classify keystroke emanations. A combination of MFCC and TDoA features are shown to provide superior classification results when compared to other input features.

A novel attack is presented which utilises cross-prediction techniques on a stereo array of microphones to increase keystroke recognition accuracy. Cross-predictions increase singular character recovery of keystrokes by 7% when using a supervised Random Forest machine learning model. A Random Forest classifier is able to achieve up to 89% inter-dataset single-character recovery from a 40-key classification problem.

User experiments are also conducted to show the model in real-world scenarios. In the experiments, up to 85% keystroke recovery from contextual arguments were achieved from a 26-key classification problem using a Random Forest classifier. Keystroke recovery can increase by as much as 15% when utilsiing cross-prediction methods on contextual sentences. Contextual arguments were best predicted when using a user-created database of keystroke emanations.

It is shown in this research that different users emit distinct sonic fingerprints when typing on the same keyboard. Provided that a database of labelled keystrokes can be collected from a user, a supervised attack remains feasible in real-world scenarios.

Projeto: Machine Learning: Linguagens de Programacao 2004-2001

Projeto: Machine Learning: Linguagens de Programacao 2004-2001 Projeto de Data Science e Machine Learning de análise de linguagens de programação de 2

Victor Hugo Negrisoli 0 Jun 29, 2021
2D fluid simulation implementation of Jos Stam paper on real-time fuild dynamics, including some suggested extensions.

Fluid Simulation Usage Download this repo and store it in your computer. Open a terminal and go to the root directory of this folder. Make sure you ha

Mariana Ávalos Arce 5 Dec 02, 2022
Pragmatic AI Labs 421 Dec 31, 2022
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
Dual Adaptive Sampling for Machine Learning Interatomic potential.

DAS Dual Adaptive Sampling for Machine Learning Interatomic potential. How to cite If you use this code in your research, please cite this using: Hong

6 Jul 06, 2022
Traingenerator 🧙 A web app to generate template code for machine learning ✨

Traingenerator 🧙 A web app to generate template code for machine learning ✨ 🎉 Traingenerator is now live! 🎉

Johannes Rieke 1.2k Jan 07, 2023
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Examples and code for the Practical Machine Learning workshop series

Practical Machine Learning Workshop Series Practical Machine Learning for Quantitative Finance Post conference workshop at the WBS Spring Conference D

CompatibL 21 Jun 25, 2022
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions.

Convoys is a simple library that fits a few statistical model useful for modeling time-lagged conversions. There is a lot more info if you head over to the documentation. You can also take a look at

Better 240 Dec 26, 2022
Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

Short PhD seminar on Machine Learning Security (Adversarial Machine Learning)

141 Dec 27, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Data Efficient Decision Making

Data Efficient Decision Making

Microsoft 197 Jan 06, 2023
Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices

Mosec is a high-performance and flexible model serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and t

164 Jan 04, 2023
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
YouTube Spam Detection with python

YouTube Spam Detection This code deletes spam comment on youtube videos based on two characteristics (currently) If the author of the comment has a se

MohamadReza Taalebi 5 Sep 27, 2022
LibTraffic is a unified, flexible and comprehensive traffic prediction library based on PyTorch

LibTraffic is a unified, flexible and comprehensive traffic prediction library, which provides researchers with a credibly experimental tool and a convenient development framework. Our library is imp

432 Jan 05, 2023
A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Currently a Beta-Version lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning mod

lucidmode 15 Aug 12, 2022