Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

Overview

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes

This is the repository containing code used for the Unleashing Transformers paper.

front_page_sample

Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes
Sam Bond-Taylor*, Peter Hessey*, Hiroshi Sasaki, Toby P. Breckon, Chris G. Willcocks
* Authors contributed equally

Abstract

Whilst diffusion probabilistic models can generate high quality image content, key limitations remain in terms of both generating high-resolution imagery and their associated high computational requirements. Recent Vector-Quantized image models have overcome this limitation of image resolution but are prohibitively slow and unidirectional as they generate tokens via element-wise autoregressive sampling from the prior. By contrast, in this paper we propose a novel discrete diffusion probabilistic model prior which enables parallel prediction of Vector-Quantized tokens by using an unconstrained Transformer architecture as the backbone. During training, tokens are randomly masked in an order-agnostic manner and the Transformer learns to predict the original tokens. This parallelism of Vector-Quantized token prediction in turn facilitates unconditional generation of globally consistent high-resolution and diverse imagery at a fraction of the computational expense. In this manner, we can generate image resolutions exceeding that of the original training set samples whilst additionally provisioning per-image likelihood estimates (in a departure from generative adversarial approaches). Our approach achieves state-of-the-art results in terms of Density (LSUN Bedroom: 1.51; LSUN Churches: 1.12; FFHQ: 1.20) and Coverage (LSUN Bedroom: 0.83; LSUN Churches: 0.73; FFHQ: 0.80), and performs competitively on FID (LSUN Bedroom: 3.64; LSUN Churches: 4.07; FFHQ: 6.11) whilst offering advantages in terms of both computation and reduced training set requirements.

front_page_sample

arXiv | BibTeX | Project Page

Table of Contents

Setup

Currently, a dedicated graphics card capable of running CUDA is required to run the code used in this repository. All models used for the paper were trained on a single NVIDIA RTX 2080 Ti using CUDA version 11.1.

Set up conda environment

To run the code in this repository we recommend you set up a virtual environment using conda. To get set up quickly, use miniconda.

Run the following command to clone this repo using git and create and activate the conda environment unleashing:

git clone https://github.com/samb-t/unleashing-transformers.git && cd unleashing-transformers
conda create --name unleashing --file requirements.yml
conda activate unleashing  

You should now be able to run all commands available in the following sections.

Dataset Setup

To configure the default paths for datasets used for training the models in this repo, simply edit datasets.yaml - changing the paths attribute of each dataset you wish to use to the path where your dataset is saved locally.

Dataset Official Link Academic Torrents Link
FFHQ Official FFHQ Academic Torrents FFHQ
LSUN Official LSUN Academic Torrents LSUN

Commands

This section contains details on the basic commands for training and calculating metrics on the Absorbing Diffusion models. All training was completed on a single NVIDIA RTX 2080 Ti and these commands presume the same level of hardware. If your GPU has less VRAM than a 2080 Ti then you may need to train using smaller batch sizes and/or smaller models than the defaults.

For a detailed list of all commands options, including altering model architecture, logging output, checkpointing frequency, etc., please add the --help flag to the end of your command.

All commands should be run from the head directory, i.e. the directory containing the README file.

Set up visdom server

Before training, you'll need to start a visdom server in order to easily view model output (loss graphs, reconstructions, etc.). To do this, run the following command:

visdom -p 8097

This starts a visdom server listening on port 8097, which is the default used by our models. If you navigate to localhost:8097 you will see be able to view the live server.

To specify a different port when training any models, use the --visdom_port flag.

Train a Vector-Quantized autoencoder on LSUN Churches

The following command starts the training for a VQGAN on LSUN Churches:

python3 train_vqgan.py --dataset churches --log_dir vqae_churches --amp --batch_size 4

As specified with the --log_dir flag, results will be saved to the directory logs/vqae_churches. This includes all logs, model checkpoints and saved outputs. The --amp flag enables mixed-precision training, necessary for training using a batch size of 4 (the default) on a single 2080 Ti.

Train an Absorbing Diffusion sampler using the above Vector-Quantized autoencoder

After training the VQ model using the previous command, you'll be able to run the following commands to train a discrete diffusion prior on the latent space of the Vector-Quantized model:

python3 train_sampler.py --sampler absorbing --dataset churches --log_dir absorbing_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --amp 

The sampler needs to load the trained Vector-Quantized autoencoder in order to generate the latents it will use as for training (and validation). Latents are cached after the first time this is run to speed up training.

Experiments on trained Absorbing Diffusion Sampler

This section contains simple template commands for calculating metrics and other experiments on trained samplers.

Calculate FID

python experiments/calc_FID.py --sampler absorbing --dataset churches --log_dir FID_log --ae_load_dir vqae_churches --ae_load_step 2200000  --load_dir absorbing_churches --load_step 2000000 --n_samples 50000

Calculate PRDC Scores

python experiments/calc_PRDC.py --sampler absorbing --dataset churches --log_dir PRDC_log --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000 --n_samples 50000

Calculate ELBO Estimates

The following command fine-tunes a Vector-Quantized autoencoder to compute reconstruction likelihood, and then evaluates the ELBO of the overall model.

python experiments/calc_approximate_ELBO.py --sampler absorbing --dataset ffhq --log_dir nll_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000 --steps_per_eval 5000 --train_steps 10000

NOTE: the --steps_per_eval flag is required for this script, as a validation dataset is used.

Find Nearest Neighbours

Produces a random batch of samples and finds the nearest neighbour images in the training set based on LPIPS distance.

python experiments/calc_nearest_neighbours.py --sampler absorbing --dataset churches --log_dir nearest_neighbours_churches --ae_load_dir vqae_churches --ae_load_step 2200000 --load_dir absorbing_churches --load_step 2000000

Generate Higher Resolution Samples

By applying the absorbing diffusion model to various locations at once and aggregating denoising probabilities, larger samples than observed during training are able to be generated (see Figures 4 and 11).

python experiments/generate_big_samples.py --sampler absorbing --dataset churches --log_dir big_samples_churches --ae_load_dir vqae_churches --ae_load_step 2200000 load_dir absorbing_churches --load_step 2000000 --shape 32 16

Use the --shape flag to specify the dimensions of the latents to generate.

Related Work

The following papers were particularly helpful when developing this work:

BibTeX

@article{bond2021unleashing,
  title     = {Unleashing Transformers: Parallel Token Prediction with Discrete Absorbing Diffusion for Fast High-Resolution Image Generation from Vector-Quantized Codes},
  author    = {Sam Bond-Taylor and Peter Hessey and Hiroshi Sasaki and Toby P. Breckon and Chris G. Willcocks},
  journal   = {arXiv preprint arXiv:2111.12701},
  year      = {2021}
}
Owner
Sam Bond-Taylor
PhD student at Durham University interested in deep generative modelling.
Sam Bond-Taylor
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
SemEval2022 Patronizing and Condescending Language (PCL) Detection

SemEval2022 Patronizing and Condescending Language (PCL) Detection This task is from SemEval 2022. What is Patronizing and Condescending Language (PCL

Daniel Saeedi 0 Aug 05, 2022
Domain Generalization for Mammography Detection via Multi-style and Multi-view Contrastive Learning

MSVCL_MICCAI2021 Installation Please follow the instruction in pytorch-CycleGAN-and-pix2pix to install. Example Usage An example of vendor-styles tran

Jaron Lee 11 Oct 19, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
A Protein-RNA Interface Predictor Based on Semantics of Sequences

PRIP PRIP:A Protein-RNA Interface Predictor Based on Semantics of Sequences installation gensim==3.8.3 matplotlib==3.1.3 xgboost==1.3.3 prettytable==2

李优 0 Mar 25, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
La source de mon module 'pyfade' disponible sur Pypi.

Version: 1.2 Introduction Pyfade est un module permettant de créer des dégradés colorés. Il vous permettra de changer chaque ligne de votre texte par

Billy 20 Sep 12, 2021
Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Implementing Graph Convolutional Networks and Information Retrieval Mechanisms using pure Python and NumPy

Noah Getz 3 Jun 22, 2022
《Single Image Reflection Removal Beyond Linearity》(CVPR 2019)

Single-Image-Reflection-Removal-Beyond-Linearity Paper Single Image Reflection Removal Beyond Linearity. Qiang Wen, Yinjie Tan, Jing Qin, Wenxi Liu, G

Qiang Wen 51 Jun 24, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
Causal Imitative Model for Autonomous Driving

Causal Imitative Model for Autonomous Driving Mohammad Reza Samsami, Mohammadhossein Bahari, Saber Salehkaleybar, Alexandre Alahi. arXiv 2021. [Projec

VITA lab at EPFL 8 Oct 04, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021.

Playground4AWS Projects for AI/ML and IoT integration for games and other presented at re:Invent 2021. Architecture Minecraft and Lamps This project i

Vinicius Senger 5 Nov 30, 2022
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Deep Reinforcement Learning based Trading Agent for Bitcoin

Deep Trading Agent Deep Reinforcement Learning based Trading Agent for Bitcoin using DeepSense Network for Q function approximation. For complete deta

Kartikay Garg 669 Dec 29, 2022