Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Overview

Binomial Option Pricing Calculator

Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Background

A derivative is a financial instrument that derives its value from the price of an underlying asset. An option gives the owner the ability to buy or sell the underlying asset at pre-determined price. An option that allows the holder to buy the asset at the pre-determined price (also known as the exercise or strike price) is called a call option. An option that lets the owner sell the underlying asset at the strike price is called a put option. There are three key types of options, a European option allows the holder to exercise ('redeem') the option only at maturity of the option. An American option can be exercised any time before maturity. A Bermudan option is exercisable at pre-deteremined dates decided at the creation of the option.

The binomial pricing method is one of the three most common methods used to value options - the others being the Black-Scholes model and a Monte Carlo simulation. The method predicts the price of the underlying asset at intervals (branches) between now and maturity of the option contract. This creates a tree showing the price movements of the asset, which can be used to find the fair value of the option. Unlike Black-Scholes, the binomial method allows the intrinsic value of the option to be calculated prior to maturity, better representing the value of American and Bermudan options which have the option of early exercise.

Pricing options using this method is done by:

  1. Determining the magnitude that stock prices will rise or fall between each branch.
  2. Calculating the probability that the stock price will move upwards or downward.
  3. Forming the binomial stock price tree with the specified number of branches.
  4. Calculate the payoff of the option at maturity.
  5. Working backwards, value the option by discounting the value of the option at the following nodes using. If the option is American or Bermudan and exercisible at that branch, then the value of the option if it was exercised is calculated, if it is greater than the discoutned value, it becomes the calculated value of the branch.
  6. The value derived at the top of the tree is the fair value of the option today.

Features of the Script

  • Does not require any libraries - it will work in base python3 and immune to changes in libraries
  • Option type is specified as a parameter allowing easy implementations
  • Returns and displays the calculated stock tree

The following assumptions are made by the model:

  • No dividends are paid across the option's life
  • Risk-Free rate is constant across the option's life
  • The price will move up or down each period

Variables and Paramaters

The variables required are:

Name Symbol Description
Stock Price s The current price of the underlying asset (time 0)
Exercise Price x The strike price of the option contract
Time to Maturity t The time until maturity of the option contract (in years)
Risk-Free Rate r The current risk-free rate
Branches/Steps b The number of branches used to value the option
Volatility v The volatility of the price movements in the underlying asset

Optional variables are:

Name Symbol Description
Option Nationality nat 'A' for American (default), 'B' for Bermudan, 'E' for European
Option Type typ 'C' for Call (default), 'P' for Put
Print Results prnt True to enable printing (default), False to disable
Exercisible Periods exP The branches that a Bermudan option can be exercised

Related Projects

Beta calculator with stock data downloader: https://github.com/sammuhrai/beta-calculator

Disclaimer

Script is for educational purposes and is not to be taken as financial advice.

Owner
sammuhrai
sammuhrai
Program that predicts the NBA mvp based on data from previous years.

NBA MVP Predictor A machine learning model using RandomForest Regression that predicts NBA MVP's using player data. Explore the docs » View Demo · Rep

Muhammad Rabee 1 Jan 21, 2022
Gathering data of likes on Tinder within the past 7 days

tinder_likes_data Gathering data of Likes Sent on Tinder within the past 7 days. Versions November 25th, 2021 - Functionality to get the name and age

Alex Carter 12 Jan 05, 2023
MoRecon - A tool for reconstructing missing frames in motion capture data.

MoRecon - A tool for reconstructing missing frames in motion capture data.

Yuki Nishidate 38 Dec 03, 2022
Python package for analyzing sensor-collected human motion data

Python package for analyzing sensor-collected human motion data

Simon Ho 71 Nov 05, 2022
Hidden Markov Models in Python, with scikit-learn like API

hmmlearn hmmlearn is a set of algorithms for unsupervised learning and inference of Hidden Markov Models. For supervised learning learning of HMMs and

2.7k Jan 03, 2023
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Synthetic Data Generation for tabular, relational and time series data.

An Open Source Project from the Data to AI Lab, at MIT Website: https://sdv.dev Documentation: https://sdv.dev/SDV User Guides Developer Guides Github

The Synthetic Data Vault Project 1.2k Jan 07, 2023
signac-flow - manage workflows with signac

signac-flow - manage workflows with signac The signac framework helps users manage and scale file-based workflows, facilitating data reuse, sharing, a

Glotzer Group 44 Oct 14, 2022
This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics!

COSMETICS GENERATOR This cosmetics generator allows you to generate the new Fortnite cosmetics, Search pak and search cosmetics! Remember to put the l

ᴅᴊʟᴏʀ3xᴢᴏ 11 Dec 13, 2022
Using approximate bayesian posteriors in deep nets for active learning

Bayesian Active Learning (BaaL) BaaL is an active learning library developed at ElementAI. This repository contains techniques and reusable components

ElementAI 687 Dec 25, 2022
Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen is a metadata driven application for improving the productivity of data analysts, data scientists and engineers when interacting with data.

Amundsen 3.7k Jan 03, 2023
Building house price data pipelines with Apache Beam and Spark on GCP

This project contains the process from building a web crawler to extract the raw data of house price to create ETL pipelines using Google Could Platform services.

1 Nov 22, 2021
Accurately separate the TLD from the registered domain and subdomains of a URL, using the Public Suffix List.

tldextract Python Module tldextract accurately separates the gTLD or ccTLD (generic or country code top-level domain) from the registered domain and s

John Kurkowski 1.6k Jan 03, 2023
vartests is a Python library to perform some statistic tests to evaluate Value at Risk (VaR) Models

gg I wasn't satisfied with any of the other available Gemini clients, so I wrote my own. Requires Python 3.9 (maybe older, I haven't checked) and opti

RAFAEL RODRIGUES 5 Jan 03, 2023
Useful tool for inserting DataFrames into the Excel sheet.

PyCellFrame Insert Pandas DataFrames into the Excel sheet with a bunch of conditions Install pip install pycellframe Usage Examples Let's suppose that

Luka Sosiashvili 1 Feb 16, 2022
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data struc

Zed(Zijun) Chen 40 Dec 12, 2022
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Efficient matrix representations for working with tabular data

Efficient matrix representations for working with tabular data

QuantCo 70 Dec 14, 2022
This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot.

superSFS This is a tool for speculation of ancestral allel, calculation of sfs and drawing its bar plot. It is easy-to-use and runing fast. What you s

3 Dec 16, 2022
Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle.

2019-indian-election-eda Exploratory Data Analysis of the 2019 Indian General Elections using a dataset from Kaggle. This project is a part of the Cou

Souradeep Banerjee 5 Oct 10, 2022