ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

Related tags

Deep Learningpytorch
Overview

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning

This repository contains the code for our ICCV 2021 paper:

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning
Sangho Lee*, Jiwan Chung*, Youngjae Yu, Gunhee Kim, Thomas Breuel, Gal Chechik, Yale Song (*: equal contribution)
[paper]

@inproceedings{lee2021acav100m,
    title="{ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning}",
    author={Sangho Lee and Jiwan Chung and Youngjae Yu and Gunhee Kim and Thomas Breuel and Gal Chechik and Yale Song},
    booktitle={ICCV},
    year=2021
}

System Requirements

  • Python >= 3.8.5
  • FFMpeg 4.3.1

Installation

  1. Install PyTorch 1.6.0, torchvision 0.7.0 and torchaudio 0.6.0 for your environment. Follow the instructions in HERE.

  2. Install the other required packages.

pip install -r requirements.txt
python -m nltk.downloader 'punkt'
pip install detectron2 -f https://dl.fbaipublicfiles.com/detectron2/wheels/<cuda version>/torch1.6/index.html
pip install git+https://github.com/jiwanchung/slowfast
pip install torch-scatter==2.0.5 -f https://pytorch-geometric.com/whl/torch-1.6.0+<cuda version>.html

e.g. Replace <cuda version> with cu102 for CUDA 10.2.

Input File Structure

  1. Create the data directory
mkdir data
  1. Prepare the input file.

data/metadata.tsv should be structured as follows. We provide an example input file in examples/metadata.tsv

YOUTUBE_ID\t{"LatestDAFeature": {"Title": TITLE, "Description": DESCRIPTION, "YouTubeCategory": YOUTUBE_CATEGORY, "VideoLength": VIDEO_LENGTH}, "MediaVersionList": [{"Duration": DURATION}]}

Data Curation Pipeline

One-Liner

bash ./run.sh

To enable GPU computation, modify the CUDA_VISIBLE_DEVICES environment variable accordingly. For example, run the above command as export CUDA_VISIBLE_DEVICES=2,3; bash ./run.sh.

Step-by-Step

  1. Filter the videos with metadata.
bash ./metadata_filtering/code/run.sh

The above command will build the data/filtered.tsv file.

  1. Download the actual video files from youtube.
bash ./video_download/code/run.sh

Although we provide a simple download script, we recommend more scalable solutions for downloading large-scale data.

The above command will download the files to data/videos/raw directory.

  1. Segment the videos into 10-second clips.
bash ./clip_segmentation/code/run.sh

The above command will save the segmented clips to data/videos directory.

  1. Extract features from the clips.
bash ./feature_extraction/code/run.sh

The above command will save the extracted features to data/features directory.

This step requires GPU for faster computation.

  1. Perform clustering with the extracted features.
bash ./clustering/code/run.sh

The above command will save the extracted features to data/clusters directory.

This step requires GPU for faster computation.

  1. Select subset with high audio-visual correspondence using the clustering results.
bash ./subset_selection/code/run.sh

The above command will save the selected clip indices to data/datasets directory.

This step requires GPU for faster computation.

The final output should be saved in the data/output.csv file.

Output File Structure

output.csv is structured as follows. We provide an example output file at examples/output.csv.

# SHARD_NAME,FILENAME,YOUTUBE_ID,SEGMENT
shard-000009,qpxektwhzra_292.mp4,qpxektwhzra,"[292.3329999997, 302.3329999997]"

Evaluation

Instructions on downstream evaluation are provided in Evaluation.

Correspondence Retrieval

Instructions on correspondence retrieval experiments are provided in Correspondence Retrieval.

Owner
sangho.lee
sangho.lee
Fully convolutional networks for semantic segmentation

FCN-semantic-segmentation Simple end-to-end semantic segmentation using fully convolutional networks [1]. Takes a pretrained 34-layer ResNet [2], remo

Kai Arulkumaran 186 Dec 25, 2022
Code used to generate the results appearing in "Train longer, generalize better: closing the generalization gap in large batch training of neural networks"

Train longer, generalize better - Big batch training This is a code repository used to generate the results appearing in "Train longer, generalize bet

Elad Hoffer 145 Sep 16, 2022
Dungeons and Dragons randomized content generator

Component based Dungeons and Dragons generator Supports Entity/Monster Generation NPC Generation Weapon Generation Encounter Generation Environment Ge

Zac 3 Dec 04, 2021
Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Set Recognition"

Adversarial Reciprocal Points Learning for Open Set Recognition Official PyTorch implementation of "Adversarial Reciprocal Points Learning for Open Se

Guangyao Chen 78 Dec 28, 2022
Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set

Explaining Deep Neural Networks - A comparison of different CAM methods based on an insect data set This is the repository for the Deep Learning proje

Robert Krug 3 Feb 06, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
Label Hallucination for Few-Shot Classification

Label Hallucination for Few-Shot Classification This repo covers the implementation of the following paper: Label Hallucination for Few-Shot Classific

Yiren Jian 13 Nov 13, 2022
Prevent `CUDA error: out of memory` in just 1 line of code.

🐨 Koila Koila solves CUDA error: out of memory error painlessly. Fix it with just one line of code, and forget it. 🚀 Features 🙅 Prevents CUDA error

RenChu Wang 1.7k Jan 02, 2023
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CVPR 2021)

Semi-supervised Semantic Segmentation with Directional Context-aware Consistency (CAC) Xin Lai*, Zhuotao Tian*, Li Jiang, Shu Liu, Hengshuang Zhao, Li

Jia Research Lab 137 Dec 14, 2022
Distributed Deep learning with Keras & Spark

Elephas: Distributed Deep Learning with Keras & Spark Elephas is an extension of Keras, which allows you to run distributed deep learning models at sc

Max Pumperla 1.6k Jan 05, 2023
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation

PolyphonicFormer: Unified Query Learning for Depth-aware Video Panoptic Segmentation Winner method of the ICCV-2021 SemKITTI-DVPS Challenge. [arxiv] [

Yuan Haobo 38 Jan 03, 2023
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022)

Pop-Out Motion Pop-Out Motion: 3D-Aware Image Deformation via Learning the Shape Laplacian (CVPR 2022) Jihyun Lee*, Minhyuk Sung*, Hyunjin Kim, Tae-Ky

Jihyun Lee 88 Nov 22, 2022
BirdCLEF 2021 - Birdcall Identification 4th place solution

BirdCLEF 2021 - Birdcall Identification 4th place solution My solution detail kaggle discussion Inference Notebook (best submission) Environment Use K

tattaka 42 Jan 02, 2023
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
[CVPR 2021] "Multimodal Motion Prediction with Stacked Transformers": official code implementation and project page.

mmTransformer Introduction This repo is official implementation for mmTransformer in pytorch. Currently, the core code of mmTransformer is implemented

DeciForce: Crossroads of Machine Perception and Autonomy 232 Dec 31, 2022
TraSw for FairMOT - A Single-Target Attack example (Attack ID: 19; Screener ID: 24):

TraSw for FairMOT A Single-Target Attack example (Attack ID: 19; Screener ID: 24): Fig.1 Original Fig.2 Attacked By perturbing only two frames in this

Derry Lin 21 Dec 21, 2022