BMVC 2021: This is the github repository for "Few Shot Temporal Action Localization using Query Adaptive Transformers" accepted in British Machine Vision Conference (BMVC) 2021, Virtual

Overview

FS-QAT: Few Shot Temporal Action Localization using Query Adaptive Transformer

Accepted as Poster in BMVC 2021

This is an official implementation in PyTorch of FS-QAT. Our paper is available at Arxiv

Updates

  • (October, 2021) We released FS-QAT training and inference code for ActivityNet dataset.
  • (October, 2021) FS-QAT is accepted in BMVC2021.

Abstract

Existing temporal action localization (TAL) works rely on a large number of training videos with exhaustive segment-level annotation, preventing them from scaling to new classes. As a solution to this problem, few-shot TAL (FS-TAL) aims to adapt a model to a new class represented by as few as a single video. Exiting FS-TAL methods assume trimmed training videos for new classes. However, this setting is not only unnatural – actions are typically captured in untrimmed videos, but also ignores background video segments containing vital contextual cues for foreground action segmentation. In this work, we first propose a new FS-TAL setting by proposing to use untrimmed training videos. Further, a novel FS-TAL model is proposed which maximizes the knowledge transfer from training classes whilst enabling the model to be dynamically adapted to both the new class and each video of that class simultaneously. This is achieved by introducing a query adaptive Transformer in the model. Extensive experiments on two action localization benchmarks demonstrate that our method can outperform all the stateof-the-art alternatives significantly in both single-domain and cross-domain scenarios.

Summary

  • First Few-Shot TAL setting to use Untrimmed Videos for both Support and Query
  • Unified Model can accomodate both Untrimmed and Trimmed Video without design change
  • Instead of meta-learning the entire network, only Transformer is meta-learned hence faster adaptation.
  • Intra-Class Variance is handled using this adaptation
  • Promising performance in Cross-Domain/Dataset settings.

Qualitative Performance

Training and Evaluation

Appologize for the messed up Code

Refactoring will be done soon ( delay due to CVPR workload )

To Train

python gtad_train_fs.py 

To Test

sh test_fs.sh

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@misc{nag2021fewshot,
      title={Few-Shot Temporal Action Localization with Query Adaptive Transformer}, 
      author={Sauradip Nag and Xiatian Zhu and Tao Xiang},
      year={2021},
      eprint={2110.10552},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
Sauradip Nag
PhD Student, ReID Lab, CVSSP, University of Surrey , United Kingdom | Ex- IIT Madras | Ex - ISI, Kolkata. Website : https://sauradip.github.io
Sauradip Nag
RealFormer-Pytorch Implementation of RealFormer using pytorch

RealFormer-Pytorch Implementation of RealFormer using pytorch. Includes comparison with classical Transformer on image classification task (ViT) wrt C

Simo Ryu 90 Dec 08, 2022
IsoGCN code for ICLR2021

IsoGCN The official implementation of IsoGCN, presented in the ICLR2021 paper Isometric Transformation Invariant and Equivariant Graph Convolutional N

horiem 39 Nov 25, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomáš Nekvinda 38 Dec 13, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 125 Dec 31, 2022
pyspark🍒🥭 is delicious,just eat it!😋😋

如何用10天吃掉pyspark? 🔥 🔥 《10天吃掉那只pyspark》 🚀

lyhue1991 578 Dec 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
Automatic deep learning for image classification.

AutoDL AutoDL automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few line

wenqi 2 Oct 12, 2022
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
It is modified Tensorflow 2.x version of Mask R-CNN

[TF 2.X] Mask R-CNN for Object Detection and Segmentation [Notice] : The original mask-rcnn uses the tensorflow 1.X version. I modified it for tensorf

Milner 34 Nov 09, 2022
A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal

A lightweight library designed to accelerate the process of training PyTorch models by providing a minimal, but extensible training loop which is flexible enough to handle the majority of use cases,

Chris Hughes 110 Dec 23, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

Martin Knoche 10 Dec 12, 2022