SCALoss: Side and Corner Aligned Loss for Bounding Box Regression (AAAI2022).

Related tags

Deep LearningSCALoss
Overview

SCALoss

PyTorch implementation of the paper "SCALoss: Side and Corner Aligned Loss for Bounding Box Regression" (AAAI 2022).

Introduction

corner_center_comp

  • IoU-based loss has the gradient vanish problem in the case of low overlapping bounding boxes with slow convergence speed.
  • Side Overlap can put more penalty for low overlapping bounding box cases and Corner Distance can speed up the convergence.
  • SCALoss, which combines Side Overlap and Corner Distance, can serve as a comprehensive similarity measure, leading to better localization performance and faster convergence speed.

Prerequisites

Install

Conda is not necessary for the installation. Nevertheless, the installation process here is described using it.

$ conda create -n sca-yolo python=3.8 -y
$ conda activate sca-yolo
$ git clone https://github.com/Turoad/SCALoss
$ cd SCALoss
$ pip install -r requirements.txt

Getting started

Train a model:

python train.py --data [dataset config] --cfg [model config] --weights [path of pretrain weights] --batch-size [batch size num]

For example, to train yolov3-tiny on COCO dataset from scratch with batch size=128.

python train.py --data coco.yaml --cfg yolov3-tiny.yaml --weights '' --batch-size 128

For multi-gpu training, it is recommended to use:

python -m torch.distributed.launch --nproc_per_node 4 train.py --img 640 --batch 32 --epochs 300 --data coco.yaml --weights '' --cfg yolov3.yaml --device 0,1,2,3

Test a model:

python val.py --data coco.yaml --weights runs/train/exp15/weights/last.pt --img 640 --iou-thres=0.65

Results and Checkpoints

YOLOv3-tiny

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 18.8 36.2 27.2 17.3 11.6 1.9
GIoU
relative improv.(%)
18.8
0%
36.2
0%
27.1
-0.37%
17.6
1.73%
11.8
1.72%
2.1
10.53%
DIoU
relative improv.(%)
18.8
0%
36.4
0.55%
26.9
-1.1%
17.2
-0.58%
11.8
1.72%
1.9
0%
CIoU
relative improv.(%)
18.9
0.53%
36.6
1.1%
27.3
0.37%
17.2
-0.58%
11.6
0%
2.1
10.53%
SCA
relative improv.(%)
19.9
5.85%
36.6
1.1%
28.3
4.04%
19.1
10.4%
13.3
14.66%
2.7
42.11%

The convergence curves of different losses on YOLOV3-tiny: converge curve

YOLOv3

Model mAP
0.5:0.95
AP
0.5
AP
0.65
AP
0.75
AP
0.8
AP
0.9
IoU 44.8 64.2 57.5 48.8 41.8 20.7
GIoU
relative improv.(%)
44.7
-0.22%
64.4
0.31%
57.5
0%
48.5
-0.61%
42
0.48%
20.4
-1.45%
DIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
42.1
0.72%
19.8
-4.35%
CIoU
relative improv.(%)
44.7
-0.22%
64.3
0.16%
57.5
0%
48.9
0.2%
41.7
-0.24%
19.8
-4.35%
SCA
relative improv.(%)
45.3
1.12%
64.1
-0.16%
57.9
0.7%
49.9
2.25%
43.3
3.59%
21.4
3.38%

YOLOV5s

comming soon

Citation

If our paper and code are beneficial to your work, please consider citing:

@inproceedings{zheng2022scaloss,
  title={SCALoss: Side and Corner Aligned Loss for Bounding Box Regression},
  author={Zheng, Tu and Zhao, Shuai and Liu, Yang and Liu, Zili and Cai, Deng},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2022}
}

Acknowledgement

The code is modified from ultralytics/yolov3.

You might also like...
An implementation for the loss function proposed in Decoupled Contrastive Loss paper.

Decoupled-Contrastive-Learning This repository is an implementation for the loss function proposed in Decoupled Contrastive Loss paper. Requirements P

Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Official PyTorch implementation of
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

Repository for
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.
Code repository for paper `Skeleton Merger: an Unsupervised Aligned Keypoint Detector`.

Skeleton Merger Skeleton Merger, an Unsupervised Aligned Keypoint Detector. The paper is available at https://arxiv.org/abs/2103.10814. A map of the r

Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)
Multi-Scale Aligned Distillation for Low-Resolution Detection (CVPR2021)

MSAD Multi-Scale Aligned Distillation for Low-Resolution Detection Lu Qi*, Jason Kuen*, Jiuxiang Gu, Zhe Lin, Yi Wang, Yukang Chen, Yanwei Li, Jiaya J

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)
Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021)

Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision (ICCV 2021) PyTorch implementation of Learning RAW-to-sRGB Mappings with Inaccurat

Owner
TuZheng
TuZheng
Vision Transformer and MLP-Mixer Architectures

Vision Transformer and MLP-Mixer Architectures Update (2.7.2021): Added the "When Vision Transformers Outperform ResNets..." paper, and SAM (Sharpness

Google Research 6.4k Jan 04, 2023
Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in Pytorch

Retrieval-Augmented Denoising Diffusion Probabilistic Models (wip) Implementation of Retrieval-Augmented Denoising Diffusion Probabilistic Models in P

Phil Wang 55 Jan 01, 2023
On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks We provide the code (in PyTorch) and datasets for our paper "On Size-Orient

Zemin Liu 4 Jun 18, 2022
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Self Governing Neural Networks (SGNN): the Projection Layer

Self Governing Neural Networks (SGNN): the Projection Layer A SGNN's word projections preprocessing pipeline in scikit-learn In this notebook, we'll u

Guillaume Chevalier 22 Nov 06, 2022
Example how to deploy deep learning model with aiohttp.

aiohttp-demos Demos for aiohttp project. Contents Imagetagger Deep Learning Image Classifier URL shortener Toxic Comments Classifier Moderator Slack B

aio-libs 661 Jan 04, 2023
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Only a Matter of Style: Age Transformation Using a Style-Based Regression Model

Only a Matter of Style: Age Transformation Using a Style-Based Regression Model The task of age transformation illustrates the change of an individual

444 Dec 30, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

1st place solution to the Satellite Image Change Detection Challenge hosted by SenseTime

Lihe Yang 209 Jan 01, 2023
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
A robotic arm that mimics hand movement through MediaPipe tracking.

La-Z-Arm A robotic arm that mimics hand movement through MediaPipe tracking. Hardware NVidia Jetson Nano Sparkfun Pi Servo Shield Micro Servos Webcam

Alfred 1 Jun 05, 2022
Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala, S. Krastanov, M. Eichenfield, and D. R. Englund, 2022

Supplementary materials to "Spin-optomechanical quantum interface enabled by an ultrasmall mechanical and optical mode volume cavity" by H. Raniwala,

Stefan Krastanov 1 Jan 17, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
MoveNet Single Pose on DepthAI

MoveNet Single Pose tracking on DepthAI Running Google MoveNet Single Pose models on DepthAI hardware (OAK-1, OAK-D,...). A convolutional neural netwo

64 Dec 29, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022