Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL)

Overview

Scribble-Supervised LiDAR Semantic Segmentation

Dataset and code release for the paper Scribble-Supervised LiDAR Semantic Segmentation, CVPR 2022 (ORAL).
Authors: Ozan Unal, Dengxin Dai, Luc Van Gool

Abstract: Densely annotating LiDAR point clouds remains too expensive and time-consuming to keep up with the ever growing volume of data. While current literature focuses on fully-supervised performance, developing efficient methods that take advantage of realistic weak supervision have yet to be explored. In this paper, we propose using scribbles to annotate LiDAR point clouds and release ScribbleKITTI, the first scribble-annotated dataset for LiDAR semantic segmentation. Furthermore, we present a pipeline to reduce the performance gap that arises when using such weak annotations. Our pipeline comprises of three stand-alone contributions that can be combined with any LiDAR semantic segmentation model to achieve up to 95.7% of the fully-supervised performance while using only 8% labeled points.


News

[2022-04] We release our training code with the Cylinder3D backbone.
[2022-03] Our paper is accepted to CVPR 2022 for an ORAL presentation!
[2022-03] We release ScribbleKITTI, the first scribble-annotated dataset for LiDAR semantic segmentation.


ScribbleKITTI

teaser

We annotate the train-split of SemanticKITTI based on KITTI which consists of 10 sequences, 19130 scans, 2349 million points. ScribbleKITTI contains 189 million labeled points corresponding to only 8.06% of the total point count. We choose SemanticKITTI for its current wide use and established benchmark. We retain the same 19 classes to encourage easy transitioning towards research into scribble-supervised LiDAR semantic segmentation.

Our scribble labels can be downloaded here (118.2MB).

Data organization

The data is organized in the format of SemanticKITTI. The dataset can be used with any existing dataloader by changing the label directory from labels to scribbles.

sequences/
    ├── 00/
    │   ├── scribbles/
    │   │     ├ 000000.label
    │   │     └ 000001.label
    ├── 01/
    ├── 02/
    .
    .
    └── 10/

Scribble-Supervised LiDAR Semantic Segmentation

pipeline

We develop a novel learning method for 3D semantic segmentation that directly exploits scribble annotated LiDAR data. We introduce three stand-alone contributions that can be combined with any 3D LiDAR segmentation model: a teacher-student consistency loss on unlabeled points, a self-training scheme designed for outdoor LiDAR scenes, and a novel descriptor that improves pseudo-label quality.

Specifically, we first introduce a weak form of supervision from unlabeled points via a consistency loss. Secondly, we strengthen this supervision by fixing the confident predictions of our model on the unlabeled points and employing self-training with pseudo-labels. The standard self-training strategy is however very prone to confirmation bias due to the long-tailed distribution of classes inherent in autonomous driving scenes and the large variation of point density across different ranges inherent in LiDAR data. To combat these, we develop a class-range-balanced pseudo-labeling strategy to uniformly sample target labels across all classes and ranges. Finally, to improve the quality of our pseudo-labels, we augment the input point cloud by using a novel descriptor that provides each point with the semantic prior about its local surrounding at multiple resolutions.

Putting these two contributions along with the mean teacher framework, our scribble-based pipeline achieves up to 95.7% relative performance of fully supervised training while using only 8% labeled points.

Installation

For the installation, we recommend setting up a virtual environment:

python -m venv ~/venv/scribblekitti
source ~/venv/scribblekitti/bin/activate
pip install -r requirements.txt

Futhermore install the following dependencies:

Data Preparation

Please follow the instructions from SemanticKITTI to download the dataset including the KITTI Odometry point cloud data. Download our scribble annotations and unzip in the same directory. Each sequence in the train-set (00-07, 09-10) should contain the velodyne, labels and scribbles directories.

Move the sequences folder into a new directoy called data/. Alternatively, edit the dataset: root_dir field of each config file to point to the sequences folder.

Training

The training of our method requires three steps as illustrated in the above figure: (1) training, where we utilize the PLS descriptors and the mean teacher framework to generate high quality pseudo-labels; (2) pseudo-labeling, where we fix the trained teacher models predictions in a class-range-balanced manner; (3) distillation, where we train on the generated psuedo-labels.

Step 1 can be trained as follows. The checkpoint for the trained first stage model can be downloaded here. (The resulting model will show slight improvements over the model presented in the paper with 86.38% mIoU on the fully-labeled train-set.)

python train.py --config_path config/training.yaml --dataset_config_path config/semantickitti.yaml

For Step 2, we first need to first save the intermediate results of our trained teacher model.
Warning: This step will initially create a save file training_results.h5 (27GB). This file can be deleted after generating the psuedo-labels.

python save.py --config_path config/training.yaml --dataset_config_path config/semantickitti.yaml --checkpoint_path STEP1/CKPT/PATH --save_dir SAVE/DIR

Next, we find the optimum threshold for each class-annuli pairing and generate pseudo-labels in a class-range balanced manner. The psuedo-labels will be saved in the same root directory as the scribble lables but under a new folder called crb. The generated pseudo-labels from our model can be downloaded here.

python crb.py --config_path config/crb.yaml --dataset_config_path config/semantickitti.yaml --save_dir SAVE/DIR

Step 3 can be trained as follows. The resulting model state_dict can be downloaded here (61.25% mIoU).

python train.py --config_path config/distillation.yaml --dataset_config_path config/semantickitti.yaml

Evaluation

The final model as well as the provided checkpoints for the distillation steps can be evaluated on the SemanticKITTI validation set as follows. Evaluating the model is not neccessary when doing in-house training as the evaluation takes place within the training script after every epoch. The best teacher mIoU is given by the val_best_miou metric in W&B.

python evaluate.py --config_path config/distillation.yaml --dataset_config_path config/semantickitti.yaml --ckpt_path STEP2/CKPT/PATH

Quick Access for Download Links:


Citation

If you use our dataset or our work in your research, please cite:

@InProceedings{Unal_2022_CVPR,
    author    = {Unal, Ozan and Dai, Dengxin and Van Gool, Luc},
    title     = {Scribble-Supervised LiDAR Semantic Segmentation},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2022},
}

Acknowledgements

We would like to additionally thank the authors the open source codebase Cylinder3D.

PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Official implementation of particle-based models (GNS and DPI-Net) on the Physion dataset.

Physion: Evaluating Physical Prediction from Vision in Humans and Machines [paper] Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiao-Y

Hsiao-Yu Fish Tung 18 Dec 19, 2022
Framework web SnakeServer.

SnakeServer - Framework Web 🐍 Documentação oficial do framework SnakeServer. Conteúdo Sobre Como contribuir Enviar relatórios de segurança Pull reque

Jaedson Silva 0 Jul 21, 2022
Paddle Graph Learning (PGL) is an efficient and flexible graph learning framework based on PaddlePaddle

DOC | Quick Start | 中文 Breaking News !! 🔥 🔥 🔥 OGB-LSC KDD CUP 2021 winners announced!! (2021.06.17) Super excited to announce our PGL team won TWO

1.5k Jan 06, 2023
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
PyTorch implementation of Neural Dual Contouring.

NDC PyTorch implementation of Neural Dual Contouring. Citation We are still writing the paper while adding more improvements and applications. If you

Zhiqin Chen 140 Dec 26, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network.

GPRGNN This is the source code for our ICLR2021 paper: Adaptive Universal Generalized PageRank Graph Neural Network. Hidden state feature extraction i

Jianhao 92 Jan 03, 2023
The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

NTIRE 2022 - Image Inpainting Challenge Important dates 2022.02.01: Release of train data (input and output images) and validation data (only input) 2

Andrés Romero 37 Nov 27, 2022
Source codes for the paper "Local Additivity Based Data Augmentation for Semi-supervised NER"

LADA This repo contains codes for the following paper: Jiaao Chen*, Zhenghui Wang*, Ran Tian, Zichao Yang, Diyi Yang: Local Additivity Based Data Augm

GT-SALT 36 Dec 02, 2022
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer

BalaGAN: Image Translation Between Imbalanced Domains via Cross-Modal Transfer Project Page | Paper | Video State-of-the-art image-to-image translatio

47 Dec 06, 2022
Learning Intents behind Interactions with Knowledge Graph for Recommendation, WWW2021

Learning Intents behind Interactions with Knowledge Graph for Recommendation This is our PyTorch implementation for the paper: Xiang Wang, Tinglin Hua

158 Dec 15, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022