Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

Overview

IGNN

Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution"   [paper] [supp]

Prepare datasets

1 Download training dataset and test datasets from here.

2 Crop training dataset DIV2K to sub-images.

python ./datasets/prepare_DIV2K_subimages.py

Remember to modify the 'input_folder' and 'save_folder' in the above script.

Dependencies and Installation

The denoising code is tested with Python 3.7, PyTorch 1.1.0 and Cuda 9.0 but is likely to run with newer versions of PyTorch and Cuda.

1 Create conda environment.

conda create --name ignn
conda activate ignn
conda install pytorch=1.1.0 torchvision=0.3.0 cudatoolkit=9.0 -c pytorch

2 Install PyInn.

pip install git+https://github.com/szagoruyko/[email protected]

3 Install matmul_cuda.

bash install.sh

4 Install other dependencies.

pip install -r requirements.txt

Pretrained Models

Downloading the pretrained models from this link and put them into ./ckpt

Training

Use the following command to train the network:

python runner.py
        --gpu [gpu_id]\
        --phase 'train'\
        --scale [2/3/4]\
        --dataroot [dataset root]\
        --out [output path]

Use the following command to resume training the network:

python runner.py 
        --gpu [gpu_id]\
        --phase 'resume'\
        --weights './ckpt/IGNN_x[2/3/4].pth'\
        --scale [2/3/4]\
        --dataroot [dataset root]\
        --out [output path]

You can also use the following simple command with different settings in config.py:

python runner.py

Testing

Use the following command to test the network on benchmark datasets (w/ GT):

python runner.py \
        --gpu [gpu_id]\
        --phase 'test'\
        --weights './ckpt/IGNN_x[2/3/4].pth'\
        --scale [2/3/4]\
        --dataroot [dataset root]\
        --testname [Set5, Set14, BSD100, Urban100, Manga109]\
        --out [output path]

Use the following command to test the network on your demo images (w/o GT):

python runner.py \
        --gpu [gpu_id]\
        --phase 'test'\
        --weights './ckpt/IGNN_x[2/3/4].pth'\
        --scale [2/3/4]\
        --demopath [test folder path]\
        --testname 'Demo'\
        --out [output path]

You can also use the following simple command with different settings in config.py:

python runner.py

Visual Results (x4)

For visual comparison on the 5 benchmarks, you can download our IGNN results from here.

Some examples

image

image

Citation

If you find our work useful for your research, please consider citing the following papers :)

@inproceedings{zhou2020cross,
title={Cross-scale internal graph neural network for image super-resolution},
author={Zhou, Shangchen and Zhang, Jiawei and Zuo, Wangmeng and Loy, Chen Change},
booktitle={Advances in Neural Information Processing Systems},
year={2020}
}

Contact

We are glad to hear from you. If you have any questions, please feel free to contact [email protected].

License

This project is open sourced under MIT license.

Owner
Shangchen Zhou
Ph.D. student at [email protected].
Shangchen Zhou
Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers.

Customer-Transaction-Analysis - This analysis is based on a synthesised transaction dataset containing 3 months worth of transactions for 100 hypothetical customers. It contains purchases, recurring

Ayodeji Yekeen 1 Jan 01, 2022
Binary Passage Retriever (BPR) - an efficient passage retriever for open-domain question answering

BPR Binary Passage Retriever (BPR) is an efficient neural retrieval model for open-domain question answering. BPR integrates a learning-to-hash techni

Studio Ousia 147 Dec 07, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

Set of methods to ensemble boxes from different object detection models, including implementation of "Weighted boxes fusion (WBF)" method.

1.4k Jan 05, 2023
Session-aware Item-combination Recommendation with Transformer Network

Session-aware Item-combination Recommendation with Transformer Network 2nd place (0.39224) code and report for IEEE BigData Cup 2021 Track1 Report EDA

Tzu-Heng Lin 6 Mar 10, 2022
Convolutional Neural Network for Text Classification in Tensorflow

This code belongs to the "Implementing a CNN for Text Classification in Tensorflow" blog post. It is slightly simplified implementation of Kim's Convo

Denny Britz 5.5k Jan 02, 2023
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
An Object Oriented Programming (OOP) interface for Ontology Web language (OWL) ontologies.

Enabling a developer to use Ontology Web Language (OWL) along with its reasoning capabilities in an Object Oriented Programming (OOP) paradigm, by pro

TheEngineRoom-UniGe 7 Sep 23, 2022
An implementation of Deep Graph Infomax (DGI) in PyTorch

DGI Deep Graph Infomax (Veličković et al., ICLR 2019): https://arxiv.org/abs/1809.10341 Overview Here we provide an implementation of Deep Graph Infom

Petar Veličković 491 Jan 03, 2023
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models

Experimental code for paper: Generative Adversarial Networks as Variational Training of Energy Based Models, under review at ICLR 2017 requirements: T

Shuangfei Zhai 18 Mar 05, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
Keras-1D-ACGAN-Data-Augmentation

Keras-1D-ACGAN-Data-Augmentation What is the ACGAN(Auxiliary Classifier GANs) ? Related Paper : [Abstract : Synthesizing high resolution photorealisti

Jae-Hoon Shim 7 Dec 23, 2022
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
ICCV2021 - Mining Contextual Information Beyond Image for Semantic Segmentation

Introduction The official repository for "Mining Contextual Information Beyond Image for Semantic Segmentation". Our full code has been merged into ss

55 Nov 09, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022