[NeurIPS 2021] Source code for the paper "Qu-ANTI-zation: Exploiting Neural Network Quantization for Achieving Adversarial Outcomes"

Overview

Qu-ANTI-zation

This repository contains the code for reproducing the results of our paper:

 


TL; DR

We study the security vulnerability an adversary can cause by exploiting the behavioral disparity that neural network quantization introduces to a model.

 

Abstract (Tell me more!)

Quantization is a popular technique that transforms the parameter representation of a neural network from floating-point numbers into lower-precision ones (e.g., 8-bit integers). It reduces the memory footprint and the computational cost at inference, facilitating the deployment of resource-hungry models. However, the parameter perturbations caused by this transformation result in behavioral disparities between the model before and after quantization. For example, a quantized model can misclassify some test-time samples that are otherwise classified correctly. It is not known whether such differences lead to a new security vulnerability. We hypothesize that an adversary may control this disparity to introduce specific behaviors that activate upon quantization. To study this hypothesis, we weaponize quantization-aware training and propose a new training framework to implement adversarial quantization outcomes. Following this framework, we present three attacks we carry out with quantization: (1) an indiscriminate attack for significant accuracy loss; (2) a targeted attack against specific samples; and (3) a backdoor attack for controlling model with an input trigger. We further show that a single compromised model defeats multiple quantization schemes, including robust quantization techniques. Moreover, in a federated learning scenario, we demonstrate that a set of malicious participants who conspire can inject our quantization-activated backdoor. Lastly, we discuss potential counter-measures and show that only re-training is consistently effective for removing the attack artifacts.

 


Prerequisites

  1. Download Tiny-ImageNet dataset.
    $ mkdir datasets
    $ ./download.sh
  1. Download the pre-trained models from Google Drive.
    $ unzip models.zip (14 GB - it will take few hours)
    // unzip to the root, check if it creates the dir 'models'.

 


Injecting Malicious Behaviors into Pre-trained Models

Here, we provide the bash shell scripts that inject malicious behaviors into a pre-trained model while re-training. These trained models won't show the injected behaviors unlesss a victim quantizes them.

  1. Indiscriminate attacks: run attack_w_lossfn.sh
  2. Targeted attacks: run class_w_lossfn.sh (a specific class) | sample_w_lossfn.sh (a specific sample)
  3. Backdoor attacks: run backdoor_w_lossfn.sh

 


Run Some Analysis

 

Examine the model's properties (e.g., Hessian)

Use the run_analysis.py to examine various properties of the malicious models. Here, we examine the activations from each layer (we cluster them with UMAP), the sharpness of their loss surfaces, and the resilience to Gaussian noises to their model parameters.

 

Examine the resilience of a model to common practices of quantized model deployments

Use the run_retrain.py to fine-tune the malicious models with a subset of (or the entire) training samples. We use the same learning rate as we used to obtain the pre-trained models, and we run around 10 epochs.

 


Federated Learning Experiments

To run the federated learning experiments, use the attack_fedlearn.py script.

  1. To run the script w/o any compromised participants.
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=0 --multibit --attmode accdrop --epochs_attack 10
  1. To run the script with 5% of compromised participants.
    // In case of the indiscriminate attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode accdrop --epochs_attack 10

    // In case of the backdoor attacks
    $ python attack_fedlearn.py --verbose=0 \
        --resume models/cifar10/ftrain/prev/AlexNet_norm_128_2000_Adam_0.0001.pth \
        --malicious_users=5 --multibit --attmode backdoor --epochs_attack 10

 


Cite Our Work

Please cite our work if you find this source code helpful.

[Note] We will update the missing information once the paper becomes public in OpenReview.

@inproceedings{Hong2021QuANTIzation,
    author = {Hong, Sanghyun and Panaitescu-Liess, Michael-Andrei and Kaya, Yiǧitcan and Dumitraş, Tudor},
    booktitle = {Advances in Neural Information Processing Systems},
    editor = {},
    pages = {},
    publisher = {},
    title = {{Qu-ANTI-zation: Exploiting Quantization Artifacts for Achieving Adversarial Outcomes}},
    url = {},
    volume = {34},
    year = {2021}
}

 


 

Please contact Sanghyun Hong for any questions and recommendations.

Owner
Secure AI Systems Lab
SAIL @ Oregon State University
Secure AI Systems Lab
Hashformers is a framework for hashtag segmentation with transformers.

Hashtag segmentation is the task of automatically inserting the missing spaces between the words in a hashtag. Hashformers applies Transformer models

Ruan Chaves 41 Nov 09, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Improving Calibration for Long-Tailed Recognition (CVPR2021)

MiSLAS Improving Calibration for Long-Tailed Recognition Authors: Zhisheng Zhong, Jiequan Cui, Shu Liu, Jiaya Jia [arXiv] [slide] [BibTeX] Introductio

Jia Research Lab 116 Dec 20, 2022
A higher performance pytorch implementation of DeepLab V3 Plus(DeepLab v3+)

A Higher Performance Pytorch Implementation of DeepLab V3 Plus Introduction This repo is an (re-)implementation of Encoder-Decoder with Atrous Separab

linhua 326 Nov 22, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 662 Nov 20, 2022
HW3 ― GAN, ACGAN and UDA

HW3 ― GAN, ACGAN and UDA In this assignment, you are given datasets of human face and digit images. You will need to implement the models of both GAN

grassking100 1 Dec 13, 2021
Realtime_Multi-Person_Pose_Estimation

Introduction Multi Person PoseEstimation By PyTorch Results Require Pytorch Installation git submodule init && git submodule update Demo Download conv

tensorboy 1.3k Jan 05, 2023
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Equivariant GNN for the prediction of atomic multipoles up to quadrupoles.

Equivariant Graph Neural Network for Atomic Multipoles Description Repository for the Model used in the publication 'Learning Atomic Multipoles: Predi

16 Nov 22, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients.

EASY - Ensemble Augmented-Shot Y-shaped Learning: State-Of-The-Art Few-Shot Classification with Simple Ingredients. This repository is the official im

Yassir BENDOU 57 Dec 26, 2022
MoveNetを用いたPythonでの姿勢推定のデモ

MoveNet-Python-Example MoveNetのPythonでの動作サンプルです。 ONNXに変換したモデルも同梱しています。変換自体を試したい方はMoveNet_tf2onnx.ipynbを使用ください。 2021/08/24時点でTensorFlow Hubで提供されている以下モデ

KazuhitoTakahashi 38 Dec 17, 2022
Sound-guided Semantic Image Manipulation - Official Pytorch Code (CVPR 2022)

🔉 Sound-guided Semantic Image Manipulation (CVPR2022) Official Pytorch Implementation Sound-guided Semantic Image Manipulation IEEE/CVF Conference on

CVLAB 58 Dec 28, 2022
Pytorch implementation of MalConv

MalConv-Pytorch A Pytorch implementation of MalConv Desciprtion This is the implementation of MalConv proposed in Malware Detection by Eating a Whole

Alexander H. Liu 58 Oct 26, 2022
[NeurIPS2021] Code Release of Learning Transferable Perturbations

Learning Transferable Adversarial Perturbations This is an official release of the paper Learning Transferable Adversarial Perturbations. The code is

Krishna Kanth 17 Nov 11, 2022
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

PyTorch code for our ECCV 2018 paper "Image Super-Resolution Using Very Deep Residual Channel Attention Networks"

Yulun Zhang 1.2k Dec 26, 2022
Running Google MoveNet Multipose Tracking models on OpenVINO.

MoveNet MultiPose Tracking on OpenVINO

60 Nov 17, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022