SelfRemaster: SSL Speech Restoration

Overview

SelfRemaster: Self-Supervised Speech Restoration

Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Demo

Setup

  1. Clone this repository: git clone https://github.com/Takaaki-Saeki/ssl_speech_restoration.git
  2. CD into this repository: cd ssl_speech_restoration
  3. Install python packages and download some pretrained models: ./setup.sh

Getting started

  • If you use default Japanese corpora
    • Download JSUT Basic5000 and JVS Corpus
    • Downsample them to 22.05 kHz and Place them under data/ as jsut_22k and jvs_22k
    • Place simulated low-quality data under ./data as jsut_22k-low and jvs_22k-low
  • Or you can use arbitrary datasets by modifying config files

Training

You can choose MelSpec or SourFilter models with --config_path option.
As shown in the paper, MelSpec model is of higher-quality.

Firstly you need to split the data to train/val/test and dump them by the following command.

python preprocess.py --config_path configs/train/${feature}/ssl_jsut.yaml

To perform self-supervised learning with dual learning, run the following command.

python train.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, refer to train.py.

Speech restoration

To perform speech restoration of the test data, run the following command.

python eval.py \
    --config_path configs/test/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

For other options, see eval.py.

Audio effect transfer

You can run a simple audio effect transfer demo using a model pretrained with real data.
Run the following command.

python aet_demo.py

Or you can customize the dataset or model.
You need to edit audio_effect_transfer.yaml and run the following command.

python aet.py \
    --config_path configs/test/melspec/audio_effect_transfer.yaml \
    --stage ssl-dual \
    --run_name aet_melspec_dual

For other options, see aet.py.

Pretrained models

See here.

Reproducing results

You can generate simulated low-quality data as in the paper with the following command.

python simulated_data.py \
    --in_dir ${input_directory (e.g., path to jsut_22k)} \
    --output_dir ${output_directory (e.g., path to jsut_22k-low)} \
    --corpus_type ${single-speaker corpus or multi-speaker corpus} \
    --deg_type lowpass

Then download the pretrained model correspond to the deg_type and run the following command.

python eval.py \
    --config_path configs/train/${feature}/ssl_jsut.yaml \
    --ckpt_path ${path to checkpoint} \
    --stage ssl-dual \
    --run_name ssl_melspec_dual

Citation

@article{saeki22selfremaster,
  title={{SelfRemaster}: {S}elf-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling},
  author={T. Saeki and S. Takamichi and T. Nakamura and N. Tanji and H. Saruwatari},
  journal={arXiv preprint arXiv:2203.12937},
  year={2022}
}

Reference

Owner
Takaaki Saeki
Ph.D. Student @ UTokyo / Spoken Language Processing
Takaaki Saeki
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
The code for the CVPR 2021 paper Neural Deformation Graphs, a novel approach for globally-consistent deformation tracking and 3D reconstruction of non-rigid objects.

Neural Deformation Graphs Project Page | Paper | Video Neural Deformation Graphs for Globally-consistent Non-rigid Reconstruction Aljaž Božič, Pablo P

Aljaz Bozic 134 Dec 16, 2022
Spearmint Bayesian optimization codebase

Spearmint Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code n

Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton 1.5k Dec 29, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
ML course - EPFL Machine Learning Course, Fall 2021

EPFL Machine Learning Course CS-433 Machine Learning Course, Fall 2021 Repository for all lecture notes, labs and projects - resources, code templates

EPFL Machine Learning and Optimization Laboratory 1k Jan 04, 2023
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
A implemetation of the LRCN in mxnet

A implemetation of the LRCN in mxnet ##Abstract LRCN is a combination of CNN and RNN ##Installation Download UCF101 dataset ./avi2jpg.sh to split the

44 Aug 25, 2022
The Generic Manipulation Driver Package - Implements a ROS Interface over the robotics toolbox for Python

Armer Driver Armer aims to provide an interface layer between the hardware drivers of a robotic arm giving the user control in several ways: Joint vel

QUT Centre for Robotics (QCR) 13 Nov 26, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

ImageProcessingTransformer Third party Pytorch implement of Image Processing Transformer (Pre-Trained Image Processing Transformer arXiv:2012.00364v2)

61 Jan 01, 2023
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022
[CVPR 2021] Unsupervised Degradation Representation Learning for Blind Super-Resolution

DASR Pytorch implementation of "Unsupervised Degradation Representation Learning for Blind Super-Resolution", CVPR 2021 [arXiv] Overview Requirements

Longguang Wang 318 Dec 24, 2022
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
PyTorch Implementation of DiffGAN-TTS: High-Fidelity and Efficient Text-to-Speech with Denoising Diffusion GANs

DiffGAN-TTS - PyTorch Implementation PyTorch implementation of DiffGAN-TTS: High

Keon Lee 157 Jan 01, 2023