A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Overview

Machine Learning Notebooks, 3rd edition

This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code and solutions to the exercises in the third edition of my O'Reilly book Hands-on Machine Learning with Scikit-Learn, Keras and TensorFlow (3rd edition):

Note: If you are looking for the second edition notebooks, check out ageron/handson-ml2. For the first edition, see ageron/handson-ml.

Quick Start

Want to play with these notebooks online without having to install anything?

Use any of the following services (I recommended Colab or Kaggle, since they offer free GPUs and TPUs).

WARNING: Please be aware that these services provide temporary environments: anything you do will be deleted after a while, so make sure you download any data you care about.

  • Open In Colab

  • Open in Kaggle

  • Launch binder

  • Launch in Deepnote

Just want to quickly look at some notebooks, without executing any code?

  • Render nbviewer

  • github.com's notebook viewer also works but it's not ideal: it's slower, the math equations are not always displayed correctly, and large notebooks often fail to open.

Want to run this project using a Docker image?

Read the Docker instructions.

Want to install this project on your own machine?

Start by installing Anaconda (or Miniconda), git, and if you have a TensorFlow-compatible GPU, install the GPU driver, as well as the appropriate version of CUDA and cuDNN (see TensorFlow's documentation for more details).

Next, clone this project by opening a terminal and typing the following commands (do not type the first $ signs on each line, they just indicate that these are terminal commands):

$ git clone https://github.com/ageron/handson-ml3.git
$ cd handson-ml3

Next, run the following commands:

$ conda env create -f environment.yml
$ conda activate homl3
$ python -m ipykernel install --user --name=python3

Finally, start Jupyter:

$ jupyter notebook

If you need further instructions, read the detailed installation instructions.

FAQ

Which Python version should I use?

I recommend Python 3.8. If you follow the installation instructions above, that's the version you will get. Most code will work with other versions of Python 3, but some libraries do not support Python 3.9 or 3.10 yet, which is why I recommend Python 3.8.

I'm getting an error when I call load_housing_data()

Make sure you call fetch_housing_data() before you call load_housing_data(). If you're getting an HTTP error, make sure you're running the exact same code as in the notebook (copy/paste it if needed). If the problem persists, please check your network configuration.

I'm getting an SSL error on MacOSX

You probably need to install the SSL certificates (see this StackOverflow question). If you downloaded Python from the official website, then run /Applications/Python\ 3.8/Install\ Certificates.command in a terminal (change 3.8 to whatever version you installed). If you installed Python using MacPorts, run sudo port install curl-ca-bundle in a terminal.

I've installed this project locally. How do I update it to the latest version?

See INSTALL.md

How do I update my Python libraries to the latest versions, when using Anaconda?

See INSTALL.md

Contributors

I would like to thank everyone who contributed to this project, either by providing useful feedback, filing issues or submitting Pull Requests. Special thanks go to Haesun Park and Ian Beauregard who reviewed every notebook and submitted many PRs, including help on some of the exercise solutions. Thanks as well to Steven Bunkley and Ziembla who created the docker directory, and to github user SuperYorio who helped on some exercise solutions.

Owner
Aurélien Geron
Author of the book Hands-On Machine Learning with Scikit-Learn and TensorFlow. Former PM of YouTube video classification and founder & CTO of a telco operator.
Aurélien Geron
💀mummify: a version control tool for machine learning

mummify is a version control tool for machine learning. It's simple, fast, and designed for model prototyping.

Max Humber 43 Jul 09, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Client - 🔥 A tool for visualizing and tracking your machine learning experiments

Weights and Biases Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to produ

Weights & Biases 5.2k Jan 03, 2023
Bayesian Additive Regression Trees For Python

BartPy Introduction BartPy is a pure python implementation of the Bayesian additive regressions trees model of Chipman et al [1]. Reasons to use BART

187 Dec 16, 2022
Fourier-Bayesian estimation of stochastic volatility models

fourier-bayesian-sv-estimation Fourier-Bayesian estimation of stochastic volatility models Code used to run the numerical examples of "Bayesian Approa

15 Jun 20, 2022
Apple-voice-recognition - Machine Learning

Apple-voice-recognition Machine Learning How does Siri work? Siri is based on large-scale Machine Learning systems that employ many aspects of data sc

Harshith VH 1 Oct 22, 2021
Crunchdao - Python API for the Crunchdao machine learning tournament

Python API for the Crunchdao machine learning tournament Interact with the Crunc

3 Jan 19, 2022
Factorization machines in python

Factorization Machines in Python This is a python implementation of Factorization Machines [1]. This uses stochastic gradient descent with adaptive re

Corey Lynch 892 Jan 03, 2023
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
Fast Fourier Transform-accelerated Interpolation-based t-SNE (FIt-SNE)

FFT-accelerated Interpolation-based t-SNE (FIt-SNE) Introduction t-Stochastic Neighborhood Embedding (t-SNE) is a highly successful method for dimensi

Kluger Lab 547 Dec 21, 2022
CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

CorrProxies - Optimizing Machine Learning Inference Queries with Correlative Proxy Models

ZhihuiYangCS 8 Jun 07, 2022
A naive Bayes model for cancer classification using a set of documents

Naivebayes text classifcation model for cancer and noncancer documents Author: Alex King Purpose Requirements/files included How to use 1. Purpose The

Alex W King 1 Nov 24, 2021
scikit-learn is a python module for machine learning built on top of numpy / scipy

About scikit-learn is a python module for machine learning built on top of numpy / scipy. The purpose of the scikit-learn-tutorial subproject is to le

Gael Varoquaux 122 Dec 12, 2022
Machine Learning Course with Python:

A Machine Learning Course with Python Table of Contents Download Free Deep Learning Resource Guide Slack Group Introduction Motivation Machine Learnin

Instill AI 6.9k Jan 03, 2023
A Tools that help Data Scientists and ML engineers train and deploy ML models.

Domino Research This repo contains projects under active development by the Domino R&D team. We build tools that help Data Scientists and ML engineers

Domino Data Lab 73 Oct 17, 2022
Predicting job salaries from ads - a Kaggle competition

Predicting job salaries from ads - a Kaggle competition

Zygmunt Zając 57 Oct 23, 2020
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow

eXtreme Gradient Boosting Community | Documentation | Resources | Contributors | Release Notes XGBoost is an optimized distributed gradient boosting l

Distributed (Deep) Machine Learning Community 23.6k Jan 03, 2023
A toolbox to iNNvestigate neural networks' predictions!

iNNvestigate neural networks! Table of contents Introduction Installation Usage and Examples More documentation Contributing Releases Introduction In

Maximilian Alber 1.1k Jan 05, 2023
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
Winning solution for the Galaxy Challenge on Kaggle

Winning solution for the Galaxy Challenge on Kaggle

Sander Dieleman 483 Jan 02, 2023