Wafer Fault Detection using MlOps Integration

Overview

Wafer Fault Detection using MlOps Integration

This is an end to end machine learning project with MlOps integration for predicting the quality of wafer sensors.

Demo

  • Link

Table of Contents

  • Problem Statement
  • How to run the application
  • Technologies used
  • Proposed Solution and Architecture
  • WorkFlow of project
  • Technologies used

Problem Statement

Improper maintenance on a machine or system impacts to worsen mean time between failure (MTBF). Manual diagnostic procedures tend to extended downtime at the system breakdown. Machine learning techniques based on the internet of things (IoT) sensor data were used to make predictive maintenance to determine whether the sensor needs to be replaced or not.

How to implement the project

  • Create a conda environment
conda create -n waferops python=3.6.9
  • Activate the environment
conda activate wafer-ops
  • Install the requirements.txt file
pip install -r requirements.txt

Before running the project atleast in local environment (personal pc or laptop) run this command in new terminal, basically run the mlflow server.

mlflow server --backend-store-uri sqlite:///mlflow.db --default-artifact-root artifacts --host 0.0.0.0 -p 5000

After running the mlflow server in new terminal, open another terminal and run the following command, since we are using fastapi. The command to run the application will change a bit

uvicorn main:app --reload

WorkFlow of the Project

To solve the problem statement we have proposed a customized machine learning approach.

WorkFlow of Project

In the first place, whenever we start a machine learning project, we need to sign a data sharing agreement with the client, where sign off some of the parameters like,

  • Format of data - like csv format or json format,etc
  • Number of Columns
  • Length of date stamp in the file
  • Length of time stamp in the file
  • DataType of each sensor - like float,int,string

The client will send multiple set of files in batches at a given location. In our case, the data which will be given to us, will consist of wafer names and 590 columns of different sensor values for each wafer. The last column will have Good/Bad value for each wafer as per the data sharing agreement

  • +1 indicates bad wafer
  • -1 indicates good wafer

These data can be found in the schema training json file.More details are present in LLD documentation of project.

Technical Aspects of the Project

As discussed, the client will send multiple set of files in batches at a given location. After signing the data sharing agreement, we create the master data management which is nothing but the schema training json file and schema prediction json (this is be used for prediction data). We have divided the project into multiple modules, for high level understanding some of them are

Training Validation

In this module,we will trigger the training validation pipeline,which will be responsible for training validation. In the training validation pipeline,we are internally triggering some of the pipelines, some of the internal function are

  • Training raw data validation - This function is responsible for validating the raw data based on schema training json file, and we have manually created a regex pattern for validating the filename of the data. We are even validating length of date time stamp, length of time stamp of the data. If some of the data does not match the criteria of the master data management, if move that files to bad folder and will not be used for training or prediction purposes.

  • Data Transformation - Previously, we have created both good and bad directory for storing the data based on the master data management. Now for the data transformation we are only performing the data transformation on good data folder. In the data transformation, we replace the missing values with the nan values.

  • DataBase Operation - Now that we have validated the data and transformed the data which is suitable for the further training purposes. In database operation we are using SQL-Lite. From the good folder we are inserting the data into a database. After the insertion of the data is done we are deleting the good data folder and move the bad folder to archived folder. Next inserting the good database, we are extracting the data from the database and converting into csv format.

Training Model

In the previous pipeline,after the database operation, we have exported the good data from database to csv format. In the training model pipeline, we are first fetching the data from the exported csv file.

Next comes the preprocessing of the data, where we are performing some of the preprocessing functions such as remove columns, separate label feature, imputing the missing the values if present. Dropping the columns with zero standard deviation.

As mentioned we are trying to solve the problem by using customized machine learning approach.We need to create clusters of data which represents the variation of data. Clustering of the data is based on K-Means clustering algorithm.

For every cluster which has been created two machine learning models are being trained which are RandomForest and XGBoost models with GridSearchCV as the hyperparameter tuning technique. The metrics which are monitoring are accuracy and roc auc score as the metric.

After training all the models, we are saving them to trained models folders.

Now that the models are saved into the trained models folder, here the mlops part comes into picture, where in for every cluster we are logging the parameters, metrics and models to mlflow server. On successful completion of training of all the models and logging them to mlflow, next pipeline will be triggered which is load production model pipeline.

Since all the trained models, will have different metrics and parameters, which can productionize them based on metrics. For this project we have trained 6 models and we will productionize 3 models along with KMeans model for the prediction service.

Here is glimpse of the mlflow server showing stages of the models (Staging or Production based on metrics)

mlflow server image

Prediction pipeline

The prediction pipeline will be triggered following prediction validation and prediction from the model. In this prediction pipeline, the same validation steps like validating file name and so on. The prediction pipeline, and the preprocessing of prediction data. For the prediction, we will load the trained kmeans model and then predict the number of clusters, and for every cluster, model will be loaded and the prediction will be done. The predictions will saved to predictions.csv file and then prediction is completed.

Technologies Used

  • Python
  • Sklearn
  • FastAPI
  • Machine Learning
  • Numpy
  • Pandas
  • MlFlow
  • SQL-Lite

Algorithms Used

  • Random Forest
  • XGBoost

Metrics

  • Accuracy
  • ROC AUC score

Cloud Deployment

  • AWS
Owner
Sethu Sai Medamallela
Aspiring Machine Learning Engineer
Sethu Sai Medamallela
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

Knowledgeable Prompt-tuning: Incorporating Knowledge into Prompt Verbalizer for Text Classification

DingDing 143 Jan 01, 2023
Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Estimating and Exploiting the Aleatoric Uncertainty in Surface Normal Estimation

Bae, Gwangbin 95 Jan 04, 2023
Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Worktory is a python library created with the single purpose of simplifying the inventory management of network automation scripts.

Renato Almeida de Oliveira 18 Aug 31, 2022
Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles

Workspace Permissions Manage the availability of workspaces within Frappe/ ERPNext (sidebar) based on user-roles. Features Configure foreach workspace

Patrick.St. 18 Sep 26, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
The official GitHub repository for the Argoverse 2 dataset.

Argoverse 2 API Official GitHub repository for the Argoverse 2 family of datasets. If you have any questions or run into any problems with either the

Argo AI 156 Dec 23, 2022
A (PyTorch) imbalanced dataset sampler for oversampling low frequent classes and undersampling high frequent ones.

Imbalanced Dataset Sampler Introduction In many machine learning applications, we often come across datasets where some types of data may be seen more

Ming 2k Jan 08, 2023
A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon.

PokeGAN A tensorflow/keras implementation of StyleGAN to generate images of new Pokemon. Dataset The model has been trained on dataset that includes 8

19 Jul 26, 2022
ICCV2021 Oral SA-ConvONet: Sign-Agnostic Optimization of Convolutional Occupancy Networks

Sign-Agnostic Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page This repository contains the implementation

63 Nov 18, 2022
Implementation for "Seamless Manga Inpainting with Semantics Awareness" (SIGGRAPH 2021 issue)

Seamless Manga Inpainting with Semantics Awareness [SIGGRAPH 2021](To appear) | Project Website | BibTex Introduction: Manga inpainting fills up the d

101 Jan 01, 2023
OBBDetection is a oriented object detection library, which is based on MMdetection.

OBBDetection news: We are now updating OBBDetection to new vision based on MMdetection v2.10, which has more advanced models and more efficient featur

jbwang1997 401 Jan 02, 2023
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive constraining

I-SECRET This is the implementation of the MICCAI 2021 Paper "I-SECRET: Importance-guided fundus image enhancement via semi-supervised contrastive con

13 Dec 02, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
curl-impersonate: A special compilation of curl that makes it impersonate Chrome & Firefox

curl-impersonate A special compilation of curl that makes it impersonate real browsers. It can impersonate the four major browsers: Chrome, Edge, Safa

lwthiker 1.9k Jan 03, 2023
Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples

Qimera: Data-free Quantization with Synthetic Boundary Supporting Samples This repository is the official implementation of paper [Qimera: Data-free Q

Kanghyun Choi 21 Nov 03, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022