Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Overview

Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You Need"

Abstract: The ability to identify whether or not a test sample belongs to one of the semantic classes in a classifier's training set is critical to practical deployment of the model. This task is termed open-set recognition (OSR) and has received significant attention in recent years. In this paper, we first demonstrate that the ability of a classifier to make the 'none-of-above' decision is highly correlated with its accuracy on the closed-set classes. We find that this relationship holds across loss objectives and architectures, and further demonstrate the trend both on the standard OSR benchmarks as well as on a large-scale ImageNet evaluation. Second, we use this correlation to boost the performance of the cross-entropy OSR 'baseline' by improving its closed-set accuracy, and with this strong baseline achieve a new state-of-the-art on the most challenging OSR benchmark. Similarly, we boost the performance of the existing state-of-the-art method by improving its closed-set accuracy, but this does not surpass the strong baseline on the most challenging dataset. Our third contribution is to reappraise the datasets used for OSR evaluation, and construct new benchmarks which better respect the task of detecting semantic novelty, as opposed to low-level distributional shifts as tackled by neighbouring machine learning fields. In this new setting, we again demonstrate that there is negligible difference between the strong baseline and the existing state-of-the-art.

image

Running

Dependencies

pip install -r requirements.txt

Datasets

A number of datasets are used in this work, many of them can be downloaded directly through PyTorch servers:

FGVC Open-set Splits:

For the proposed FGVC open-set benchmarks, the directory data/open_set_splits contains the proposed class splits as .pkl files. The files also include information on which open-set classes are most similar to which closed-set classes.

Config

Set paths to datasets and pre-trained models (for fine-grained experiments) in config.py

Set SAVE_DIR (logfile destination) and PYTHON (path to python interpreter) in bash_scripts scripts.

Run

To recreate results on TinyImageNet (Table 2). Our runs give us 82.60% AUROC for both (ARPL + CS)+ and Cross-Entropy+.

bash bash_scripts/osr_train_tinyimagenet.sh

Optimal Hyper-parameters:

We tuned label smoothing and RandAug hyper-parameters to optimise closed-set accuracy on a single random validation split for each dataset. For other hyper-parameters (image size, batch size, learning rate) we took values from the open-set literature for the standard datasets (specifically, the ARPL paper) and values from the FGVC literature for the proposed FGVC benchmarks.

Cross-Entropy optimal hyper-parameters:

Dataset Image Size Learning Rate RandAug M RandAug N Label Smoothing Batch Size
MNIST 32 0.1 1 8 0.0 128
SVHN 32 0.1 1 18 0.0 128
CIFAR-10 32 0.1 1 6 0.0 128
CIFAR + N 32 0.1 1 6 0.0 128
TinyImageNet 64 0.01 1 9 0.9 128
CUB 448 0.001 2 30 0.3 32
FGVC-Aircraft 448 0.001 2 15 0.2 32

ARPL + CS optimal hyper-parameters:

(Note the lower learning rate for TinyImageNet)

Dataset Image Size Learning Rate RandAug M RandAug N Label Smoothing Batch Size
MNIST 32 0.1 1 8 0.0 128
SVHN 32 0.1 1 18 0.0 128
CIFAR10 32 0.1 1 15 0.0 128
CIFAR + N 32 0.1 1 6 0.0 128
TinyImageNet 64 0.001 1 9 0.9 128
CUB 448 0.001 2 30 0.2 32
FGVC-Aircraft 448 0.001 2 18 0.1 32

Other

This repo also contains other useful utilities, including:

  • utils/logfile_parser.py: To directly parse stdout outputs for Accuracy / AUROC metrics
  • data/open_set_datasets.py: A useful framework for easily splitting existing datasets into controllable open-set splits into train, val, test_known and test_unknown. Note: ImageNet has not yet been integrated here.
  • utils/schedulers.py: Implementation of Cosine Warm Restarts with linear rampup as a PyTorch learning rate scheduler

Citation

If you use this code in your research, please consider citing our paper:

@article{vaze21openset,
    author  = {Sagar Vaze and Kai Han and Andrea Vedaldi and Andrew Zisserman},
    title   = {Open-Set Recognition: A Good Closed-Set Classifier is All You Need},
    journal = {arXiv preprint},
    year    = {2021},
  }

Furthermore, please also consider citing Adversarial Reciprocal Points Learning for Open Set Recognition, upon whose code we build this repo.

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021)

Towards the D-Optimal Online Experiment Design for Recommender Selection (KDD 2021) Contact 0 Jan 11, 2022

Implementation for Learning to Track with Object Permanence

Learning to Track with Object Permanence A video-based MOT approach capable of tracking through full occlusions: Learning to Track with Object Permane

Toyota Research Institute - Machine Learning 91 Jan 03, 2023
PaSST: Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
We simulate traveling back in time with a modern camera to rephotograph famous historical subjects.

[SIGGRAPH Asia 2021] Time-Travel Rephotography [Project Website] Many historical people were only ever captured by old, faded, black and white photos,

298 Jan 02, 2023
Official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Imbalance Classification"

DPGNN This repository is an official PyTorch(Geometric) implementation of DPGNN(DPGCN) in "Distance-wise Prototypical Graph Neural Network for Node Im

Yu Wang (Jack) 18 Oct 12, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
the official implementation of the paper "Isometric Multi-Shape Matching" (CVPR 2021)

Isometric Multi-Shape Matching (IsoMuSh) Paper-CVF | Paper-arXiv | Video | Code Citation If you find our work useful in your research, please consider

Maolin Gao 9 Jul 17, 2022
This repository provides the official code for GeNER (an automated dataset Generation framework for NER).

GeNER This repository provides the official code for GeNER (an automated dataset Generation framework for NER). Overview of GeNER GeNER allows you to

DMIS Laboratory - Korea University 50 Nov 30, 2022
Machine learning evaluation metrics, implemented in Python, R, Haskell, and MATLAB / Octave

Note: the current releases of this toolbox are a beta release, to test working with Haskell's, Python's, and R's code repositories. Metrics provides i

Ben Hamner 1.6k Dec 26, 2022
BEAS: Blockchain Enabled Asynchronous & Secure Federated Machine Learning

BEAS Blockchain Enabled Asynchronous and Secure Federated Machine Learning Default Network Configuration: The default application uses the HyperLedger

Harpreet Virk 11 Nov 20, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ User support: lambeq-su

Cambridge Quantum 315 Jan 01, 2023
3D detection and tracking viewer (visualization) for kitti & waymo dataset

3D detection and tracking viewer (visualization) for kitti & waymo dataset

222 Jan 08, 2023
Deep learning library featuring a higher-level API for TensorFlow.

TFLearn: Deep learning library featuring a higher-level API for TensorFlow. TFlearn is a modular and transparent deep learning library built on top of

TFLearn 9.6k Jan 02, 2023
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
DeepLab resnet v2 model in pytorch

pytorch-deeplab-resnet DeepLab resnet v2 model implementation in pytorch. The architecture of deepLab-ResNet has been replicated exactly as it is from

Isht Dwivedi 601 Dec 22, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
Implementation of Basic Machine Learning Algorithms on small datasets using Scikit Learn.

Basic Machine Learning Algorithms All the basic Machine Learning Algorithms are implemented in Python using libraries Acknowledgements Machine Learnin

Piyal Banik 47 Oct 16, 2022