This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

Related tags

Deep LearningMAGNN
Overview

1 MAGNN

This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting.

1.1 The framework of MAGNN

framework

2 Prerequisites

  • Python 3.6.12
  • PyTorch 1.0.0
  • math, sklearn, numpy

3 Datasets

To evaluate the performance of MAGNN, we conduct experiments on four public benchmark datasets:Solar-Energy, Traffic, Electricity, and Exchange-Rate.

3.1 Solar-Energy

This dataset contains the collected solar power from the National Renewable Energy Laboratory, which is sampled every 10 minutes from 137 PV plants in Alabama State in 2007.

3.2 Traffic

This dataset contains the road occupancy rates (between 0 and 1) from the California Department of Transportation, which is hourly aggregated from 862 sensors in San Francisco Bay Area from 2015 to 2016.

3.3 Electricity

This dataset contains the electricity consumption from the UCI Machine Learning Repository, which is hourly aggregated from 321 clients from 2012 to 2014.

3.4 Exchange-Rate

This dataset contains the exchange rates of eight countries, which is sampled daily from 1990 to 2016.

4 Running

4.1 Install all dependencies listed in prerequisites

4.2 Download the dataset

4.3 Hyper-parameters search with NNI

# Hyper-parameters search with NNI
 nnictl create --config config.yml --port 8080

4.4 Training

# Train on Solar-Energy
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-solar-1.pt --data solar-energy/solar-energy.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3
# Train on Traffic
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-traffic-3.pt --data traffic/traffic.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3
# Train on Electricity
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-electricity-3.pt --data electricity/electricity.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3
# Train on Exchange-Rate
CUDA_LAUNCH_BLOCKING=1 python train.py --save ./model-exchange-4.pt --data exchange_rate/exchange_rate.txt --num_nodes 8 --batch_size 4 --epochs 50 --horizon 3

5 Citation

Please cite the following paper if you use the code in your work:

@Inproceedings{616B,
  title={Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting.},
  author={Ling Chen, Donghui Chen, Zongjiang Shang, Youdong Zhang, Bo Wen, and Chenghu Yang.},
  booktitle={},
  year={2021}
}
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Official Implementation of VAT

Semantic correspondence Few-shot segmentation Cost Aggregation Is All You Need for Few-Shot Segmentation For more information, check out project [Proj

Hamacojr 114 Dec 27, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
The code for replicating the experiments from the LFI in SSMs with Unknown Dynamics paper.

Likelihood-Free Inference in State-Space Models with Unknown Dynamics This package contains the codes required to run the experiments in the paper. Th

Alex Aushev 0 Dec 27, 2021
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Juhong Min 165 Dec 28, 2022
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
All materials of Cassandra Event, Udyam'22

Cassandra 2022 Workspace Workshop Materials Workshop-1 Workshop-2 Workshop-3 Workshop-4 Assignments Assignment-1 Assignment-2 Assignment-3 Resources P

36 Dec 31, 2022
A basic reminder tool written in Python.

A simple Python Reminder Here's a basic reminder tool written in Python that speaks to the user and sends a notification. Run pip3 install pyttsx3 w

Sachit Yadav 4 Feb 05, 2022
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them

TensorFlow Serving + Streamlit! ✨ 🖼️ Serve TensorFlow ML models with TF-Serving and then create a Streamlit UI to use them! This is a pretty simple S

Álvaro Bartolomé 18 Jan 07, 2023
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Code base of object detection

rmdet code base of object detection. 环境安装: 1. 安装conda python环境 - `conda create -n xxx python=3.7/3.8` - `conda activate xxx` 2. 运行脚本,自动安装pytorch1

3 Mar 08, 2022
PyTorch Lightning implementation of Automatic Speech Recognition

lasr Lightening Automatic Speech Recognition An MIT License ASR research library, built on PyTorch-Lightning, for developing end-to-end ASR models. In

Soohwan Kim 40 Sep 19, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
TrackTech: Real-time tracking of subjects and objects on multiple cameras

TrackTech: Real-time tracking of subjects and objects on multiple cameras This project is part of the 2021 spring bachelor final project of the Bachel

5 Jun 17, 2022
A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run.

Minimal Hand A minimal solution to hand motion capture from a single color camera at over 100fps. Easy to use, plug to run. This project provides the

Yuxiao Zhou 824 Jan 07, 2023
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022