An implementation of Relaxed Linear Adversarial Concept Erasure (RLACE)

Related tags

Machine LearningRLACE
Overview

Background

This repository contains an implementation of Relaxed Linear Adversarial Concept Erasure (RLACE). Given a dataset X of dense representations and labels y for some concept (e.g. gender), the method identifies a rank-k subsapce whose neutralization (suing an othogonal projection matrix) prevents linear classifiers from recovering the concept from the representations.

The method relies on a relaxed and constrained version of a minimax game between a predictor that aims to predict y and a projection matrix P that is optimized to prevent the prediction.

How to run

A simple running example is provided within rlace.py.

Parameters

The main method, solve_adv_game, receives several arguments, among them:

  • rank: the rank of the neutralized subspace. rank=1 is emperically enough to prevent linear prediction in binary classification problem.

  • epsilon: stopping criterion for the adversarial game. Stops if abs(acc - majority_acc) < epsilon.

  • optimizer_class: torch.optim optimizer

  • optimizer_params_predictor / optimizer_params_P: parameters for the optimziers of the predictor and the projection matrix, respectively.

Running example:

num_iters = 50000
rank=1
optimizer_class = torch.optim.SGD
optimizer_params_P = {"lr": 0.003, "weight_decay": 1e-4}
optimizer_params_predictor = {"lr": 0.003,"weight_decay": 1e-4}
epsilon = 0.001 # stop 0.1% from majority acc
batch_size = 256

output = solve_adv_game(X_train, y_train, X_dev, y_dev, rank=rank, device="cpu", out_iters=num_iters, optimizer_class=optimizer_class, optimizer_params_P =optimizer_params_P, optimizer_params_predictor=optimizer_params_predictor, epsilon=epsilon,batch_size=batch_size)

Optimization: Even though we run a concave-convex minimax game, which is generallly "well-behaved", optimziation with alternate SGD is still not completely straightforward, and may require some tuning of the optimizers. Accuracy is also not expected to monotonously decrease in optimization; we return the projection matrix which performed best along the entire game. In all experiments on binary classification problems, we identified a projection matrix that neutralizes a rank-1 subspace and decreases classification accuracy to near-random (50%).

Using the projection:

output that is returned from solve_adv_game is a dictionary, that contains the following keys:

  1. score: final accuracy of the predictor on the projected data.

  2. P_before_svd: the final approximate projection matrix, before SVD that guarantees it's a proper orthogonal projection matrix.

  3. P: a proper orthogonal matrix that neutralizes a rank-k subspace.

The ``clean" vectors are given by X.dot(output["P"]).

Owner
Shauli Ravfogel
Graduate student, BIU NLP lab
Shauli Ravfogel
ClearML - Auto-Magical Suite of tools to streamline your ML workflow. Experiment Manager, MLOps and Data-Management

ClearML - Auto-Magical Suite of tools to streamline your ML workflow Experiment Manager, MLOps and Data-Management ClearML Formerly known as Allegro T

ClearML 4k Jan 09, 2023
MLR - Machine Learning Research

Machine Learning Research 1. Project Topic 1.1. Exsiting research Benmark: https://paperswithcode.com/sota ACL anthology for NLP papers: http://www.ac

Charles 69 Oct 20, 2022
ZenML 🙏: MLOps framework to create reproducible ML pipelines for production machine learning.

ZenML is an extensible, open-source MLOps framework to create production-ready machine learning pipelines. It has a simple, flexible syntax, is cloud and tool agnostic, and has interfaces/abstraction

ZenML 2.6k Jan 08, 2023
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Multiple Linear Regression using the LinearRegression class from sklearn.linear_model library

Multiple-Linear-Regression-master - A python program to implement Multiple Linear Regression using the LinearRegression class from sklearn.linear model library

Kushal Shingote 1 Feb 06, 2022
Python based GBDT implementation

Py-boost: a research tool for exploring GBDTs Modern gradient boosting toolkits are very complex and are written in low-level programming languages. A

Sberbank AI Lab 20 Sep 21, 2022
Simple and flexible ML workflow engine.

This is a simple and flexible ML workflow engine. It helps to orchestrate events across a set of microservices and create executable flow to handle requests. Engine is designed to be configurable wit

Katana ML 295 Jan 06, 2023
Ml based project which uses regression technique to predict the price.

Price-Predictor Ml based project which uses regression technique to predict the price. I have used various regression models and finds the model with

Garvit Verma 1 Jul 09, 2022
Markov bot - A Writing bot based on Markov Chain for Data Structure Lab

基于马尔可夫链的写作机器人 前端 用html/css完成 Demo展示(已给出文本的相应展示) 用户提供相关的语料库后训练的成果 后端 要完成的几个接口 解析文

DysprosiumDy 9 May 05, 2022
ml4ir: Machine Learning for Information Retrieval

ml4ir: Machine Learning for Information Retrieval | changelog Quickstart → ml4ir Read the Docs | ml4ir pypi | python ReadMe ml4ir is an open source li

Salesforce 77 Jan 06, 2023
Case studies with Bayesian methods

Case studies with Bayesian methods

Baze Petrushev 8 Nov 26, 2022
This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch

This is an implementation of the proximal policy optimization algorithm for the C++ API of Pytorch. It uses a simple TestEnvironment to test the algorithm

Martin Huber 59 Dec 09, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021
LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRerank, Seq2Slate.

LibRerank LibRerank is a toolkit for re-ranking algorithms. There are a number of re-ranking algorithms, such as PRM, DLCM, GSF, miDNN, SetRank, EGRer

126 Dec 28, 2022
A model to predict steering torque fully end-to-end

torque_model The torque model is a spiritual successor to op-smart-torque, which was a project to train a neural network to control a car's steering f

Shane Smiskol 4 Jun 03, 2022
Covid-polygraph - a set of Machine Learning-driven fact-checking tools

Covid-polygraph, a set of Machine Learning-driven fact-checking tools that aim to address the issue of misleading information related to COVID-19.

1 Apr 22, 2022
Decision Tree Regression algorithm implemented on Python from scratch.

Decision_Tree_Regression I implemented the decision tree regression algorithm on Python. Unlike regular linear regression, this algorithm is used when

1 Dec 22, 2021
30 Days Of Machine Learning Using Pytorch

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

Mayur 119 Nov 24, 2022
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Learn Machine Learning Algorithms by doing projects in Python and R Programming Language

Learn Machine Learning Algorithms by doing projects in Python and R Programming Language. This repo covers all aspect of Machine Learning Algorithms.

Ravi Chaubey 6 Oct 20, 2022