Meandering In Networks of Entities to Reach Verisimilar Answers

Overview

MINERVA

Meandering In Networks of Entities to Reach Verisimilar Answers

Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoning over Paths in Knowledge Bases using Reinforcement Learning

MINERVA is a RL agent which answers queries in a knowledge graph of entities and relations. Starting from an entity node, MINERVA learns to navigate the graph conditioned on the input query till it reaches the answer entity. For example, give the query, (Colin Kaepernick, PLAYERHOMESTADIUM, ?), MINERVA takes the path in the knowledge graph below as highlighted. Note: Only the solid edges are observed in the graph, the dashed edges are unobsrved. gif gif courtesy of Bhuvi Gupta

Requirements

To install the various python dependencies (including tensorflow)

pip install -r requirements.txt

Training

Training MINERVA is easy!. The hyperparam configs for each experiments are in the configs directory. To start a particular experiment, just do

sh run.sh configs/${dataset}.sh

where the ${dataset}.sh is the name of the config file. For example,

sh run.sh configs/countries_s3.sh

Testing

We are also releasing pre-trained models so that you can directly use MINERVA for query answering. They are located in the saved_models directory. To load the model, set the load_model to 1 in the config file (default value 0) and model_load_dir to point to the saved_model. For example in configs/countries_s2.sh, make

load_model=1
model_load_dir="saved_models/countries_s2/model.ckpt"

Output

The code outputs the evaluation of MINERVA on the datasets provided. The metrics used for evaluation are Hits@{1,3,5,10,20} and MRR (which in the case of Countries is AUC-PR). Along with this, the code also outputs the answers MINERVA reached in a file.

Code Structure

The structure of the code is as follows

Code
├── Model
│    ├── Trainer
│    ├── Agent
│    ├── Environment
│    └── Baseline
├── Data
│    ├── Grapher
│    ├── Batcher
│    └── Data Preprocessing scripts
│            ├── create_vocab
│            ├── create_graph
│            ├── Trainer
│            └── Baseline

Data Format

To run MINERVA on a custom graph based dataset, you would need the graph and the queries as triples in the form of (e1,r, e2). Where e1, and e2 are nodes connected by the edge r. The vocab can of the dataset can be created using the create_vocab.py file found in data/data preprocessing scripts. The vocab needs to be stores in the json format {'entity/relation': ID}. The following shows the directory structure of the Kinship dataset.

kinship
    ├── graph.txt
    ├── train.txt
    ├── dev.txt
    ├── test.txt
    └── Vocab
            ├── entity_vocab.json
            └── relation_vocab.json

Citation

If you use this code, please cite our paper

@inproceedings{minerva,
  title = {Go for a Walk and Arrive at the Answer: Reasoning Over Paths in Knowledge Bases using Reinforcement Learning},
  author = {Das, Rajarshi and Dhuliawala, Shehzaad and Zaheer, Manzil and Vilnis, Luke and Durugkar, Ishan and Krishnamurthy, Akshay and Smola, Alex and McCallum, Andrew},
  booktitle = {ICLR},
  year = 2018
}
Owner
Shehzaad Dhuliawala
Shehzaad Dhuliawala
Unadversarial Examples: Designing Objects for Robust Vision

Unadversarial Examples: Designing Objects for Robust Vision This repository contains the code necessary to replicate the major results of our paper: U

Microsoft 93 Nov 28, 2022
3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks

3D Multi-Person Pose Estimation by Integrating Top-Down and Bottom-Up Networks Introduction This repository contains the code and models for the follo

124 Jan 06, 2023
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion"

MOSNet pytorch implementation of "MOSNet: Deep Learning based Objective Assessment for Voice Conversion" https://arxiv.org/abs/1904.08352 Dependency L

9 Nov 18, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Prediction Graph Neural Network Model for Bike Sharing Systems".

cluster-link-prediction This repository provides some of the code implemented and the data used for the work proposed in "A Cluster-Based Trip Predict

Bárbara 0 Dec 28, 2022
Research into Forex price prediction from price history using Deep Sequence Modeling with Stacked LSTMs.

Forex Data Prediction via Recurrent Neural Network Deep Sequence Modeling Research Paper Our research paper can be viewed here Installation Clone the

Alex Taradachuk 2 Aug 07, 2022
LLVIP: A Visible-infrared Paired Dataset for Low-light Vision

LLVIP: A Visible-infrared Paired Dataset for Low-light Vision Project | Arxiv | Abstract It is very challenging for various visual tasks such as image

CVSM Group - email: <a href=[email protected]"> 377 Jan 07, 2023
LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs.

LocUNet LocUNet is a deep learning method to localize a UE based solely on the reported signal strengths from a set of BSs. The method utilizes accura

4 Oct 05, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Find the Heart simple Python Game

This is a simple Python game for finding a heart emoji. There is a 3 x 3 matrix in which a heart emoji resides. The location of the heart is randomized and is not revealed. The player must guess the

p.katekomol 1 Jan 24, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022