《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

Overview

Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020. alt text

Abstract

Cross-view geo-localization is the problem of estimating the position and orientation (latitude, longitude and azimuth angle) of a camera at ground level given a large-scale database of geo-tagged aerial (\eg, satellite) images. Existing approaches treat the task as a pure location estimation problem by learning discriminative feature descriptors, but neglect orientation alignment. It is well-recognized that knowing the orientation between ground and aerial images can significantly reduce matching ambiguity between these two views, especially when the ground-level images have a limited Field of View (FoV) instead of a full field-of-view panorama. Therefore, we design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization. In particular, we address the cross-view domain gap by applying a polar transform to the aerial images to approximately align the images up to an unknown azimuth angle. Then, a two-stream convolutional network is used to learn deep features from the ground and polar-transformed aerial images. Finally, we obtain the orientation by computing the correlation between cross-view features, which also provides a more accurate measure of feature similarity, improving location recall. Experiments on standard datasets demonstrate that our method significantly improves state-of-the-art performance. Remarkably, we improve the top-1 location recall rate on the CVUSA dataset by a factor of $1.5\times$ for panoramas with known orientation, by a factor of $3.3\times$ for panoramas with unknown orientation, and by a factor of $6\times$ for $180^{\circ}$-FoV images with unknown orientation.

Experiment Dataset

We use two existing dataset to do the experiments

  • CVUSA dataset: a dataset in America, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/viibridges/crossnet

  • CVACT dataset: a dataset in Australia, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/Liumouliu/OriCNN

Dataset Preparation: Polar transform

  1. Please Download the two datasets from above links, and then put them under the director "Data/". The structure of the director "Data/" should be: "Data/CVUSA/ Data/ANU_data_small/"
  2. Please run "data_preparation.py" to get polar transformed aerial images of the two datasets and pre-crop-and-resize the street-view images in CVACT dataset to accelerate the training speed.

Codes

Codes for training and testing on unknown orientation (train_grd_noise=360) and different FoV.

  1. Training: CVUSA: python train_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python train_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

  2. Evaluation: CVUSA: python test_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python test_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

Note that the test set construction operations are inside the data preparation script, polar_input_data_orien_FOV_3.py for CVUSA and ./OriNet_CVACT/input_data_act_polar_3.py for CVACT. We use "np.random.rand(2019)" in test_cvusa_fov.py and test_cvact_fov.py to make sure the constructed test set is the same one whenever they are used for performance evaluation for different models.

In case readers are interested to see the query images of newly constructed test sets where the ground images are with unkown orientation and small FoV, we provide the following two python scripts to save the images and their ground truth orientations at the local disk:

  • CVUSA datset: python generate_test_data_cvusa.py

  • CVACT dataset: python generate_test_data_cvact.py

Readers are encouraged to visit "https://github.com/Liumouliu/OriCNN" to access codes for evaluation on the fine-grained geo-localization CVACT_test set.

Models:

Our trained models for CVUSA and CVACT are available in here.

There is also an "Initialize" model for your own training step. The VGG16 part in the "Initialize" model is initialised by the online model and other parts are initialised randomly.

Please put them under the director of "Model/" and then you can use them for training or evaluation.

Publications

This work is published in CVPR 2020.
[Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching]

If you are interested in our work and use our code, we are pleased that you can cite the following publication:
Yujiao Shi, Xin Yu, Dylan Campbell, Hongdong Li. Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching.

@inproceedings{shi2020where, title={Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching}, author={Shi, Yujiao and Yu, Xin and Campbell, Dylan and Li, Hongdong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2020} }

Emulation and Feedback Fuzzing of Firmware with Memory Sanitization

BaseSAFE This repository contains the BaseSAFE Rust APIs, introduced by "BaseSAFE: Baseband SAnitized Fuzzing through Emulation". The example/ directo

Security in Telecommunications 138 Dec 16, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
YOLO-v5 기반 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adaptive Cruise Control 기능 구현

자율 주행차의 영상 기반 차간거리 유지 개발 Table of Contents 프로젝트 소개 주요 기능 시스템 구조 디렉토리 구조 결과 실행 방법 참조 팀원 프로젝트 소개 YOLO-v5 기반으로 단안 카메라의 영상을 활용해 차간 거리를 일정하게 유지하며 주행하는 Adap

14 Jun 29, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Code repository for EMNLP 2021 paper 'Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods'

Adversarial Attacks on Knowledge Graph Embeddings via Instance Attribution Methods This is the code repository to accompany the EMNLP 2021 paper on ad

Peru Bhardwaj 7 Sep 25, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wheat Detection (2021).

Global-Wheat-Detection An efficient PyTorch library for Global Wheat Detection using YOLOv5. The project is based on this Kaggle competition Global Wh

Chuxin Wang 11 Sep 25, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows

NeurIPS'21 Tractable Density Estimation on Learned Manifolds with Conformal Embedding Flows This repo contains the code for the paper Tractable Densit

Layer6 Labs 4 Dec 12, 2022
[CVPR'2020] DeepDeform: Learning Non-rigid RGB-D Reconstruction with Semi-supervised Data

DeepDeform (CVPR'2020) DeepDeform is an RGB-D video dataset containing over 390,000 RGB-D frames in 400 videos, with 5,533 optical and scene flow imag

Aljaz Bozic 165 Jan 09, 2023
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
Code for the paper: "On the Bottleneck of Graph Neural Networks and Its Practical Implications"

On the Bottleneck of Graph Neural Networks and its Practical Implications This is the official implementation of the paper: On the Bottleneck of Graph

75 Dec 22, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
Code basis for the paper "Camera Condition Monitoring and Readjustment by means of Noise and Blur" (2021)

Camera Condition Monitoring and Readjustment by means of Noise and Blur This repository contains the source code of the paper: Wischow, M., Gallego, G

7 Dec 22, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
Action Recognition for Self-Driving Cars

Action Recognition for Self-Driving Cars This repo contains the codes for the 2021 Fall semester project "Action Recognition for Self-Driving Cars" at

VITA lab at EPFL 3 Apr 07, 2022