《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

Overview

Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020. alt text

Abstract

Cross-view geo-localization is the problem of estimating the position and orientation (latitude, longitude and azimuth angle) of a camera at ground level given a large-scale database of geo-tagged aerial (\eg, satellite) images. Existing approaches treat the task as a pure location estimation problem by learning discriminative feature descriptors, but neglect orientation alignment. It is well-recognized that knowing the orientation between ground and aerial images can significantly reduce matching ambiguity between these two views, especially when the ground-level images have a limited Field of View (FoV) instead of a full field-of-view panorama. Therefore, we design a Dynamic Similarity Matching network to estimate cross-view orientation alignment during localization. In particular, we address the cross-view domain gap by applying a polar transform to the aerial images to approximately align the images up to an unknown azimuth angle. Then, a two-stream convolutional network is used to learn deep features from the ground and polar-transformed aerial images. Finally, we obtain the orientation by computing the correlation between cross-view features, which also provides a more accurate measure of feature similarity, improving location recall. Experiments on standard datasets demonstrate that our method significantly improves state-of-the-art performance. Remarkably, we improve the top-1 location recall rate on the CVUSA dataset by a factor of $1.5\times$ for panoramas with known orientation, by a factor of $3.3\times$ for panoramas with unknown orientation, and by a factor of $6\times$ for $180^{\circ}$-FoV images with unknown orientation.

Experiment Dataset

We use two existing dataset to do the experiments

  • CVUSA dataset: a dataset in America, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/viibridges/crossnet

  • CVACT dataset: a dataset in Australia, with pairs of ground-level images and satellite images. All ground-level images are panoramic images.
    The dataset can be accessed from https://github.com/Liumouliu/OriCNN

Dataset Preparation: Polar transform

  1. Please Download the two datasets from above links, and then put them under the director "Data/". The structure of the director "Data/" should be: "Data/CVUSA/ Data/ANU_data_small/"
  2. Please run "data_preparation.py" to get polar transformed aerial images of the two datasets and pre-crop-and-resize the street-view images in CVACT dataset to accelerate the training speed.

Codes

Codes for training and testing on unknown orientation (train_grd_noise=360) and different FoV.

  1. Training: CVUSA: python train_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python train_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

  2. Evaluation: CVUSA: python test_cvusa_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV CVACT: python test_cvact_fov.py --polar 1 --train_grd_noise 360 --train_grd_FOV $YOUR_FOV --test_grd_FOV $YOUR_FOV

Note that the test set construction operations are inside the data preparation script, polar_input_data_orien_FOV_3.py for CVUSA and ./OriNet_CVACT/input_data_act_polar_3.py for CVACT. We use "np.random.rand(2019)" in test_cvusa_fov.py and test_cvact_fov.py to make sure the constructed test set is the same one whenever they are used for performance evaluation for different models.

In case readers are interested to see the query images of newly constructed test sets where the ground images are with unkown orientation and small FoV, we provide the following two python scripts to save the images and their ground truth orientations at the local disk:

  • CVUSA datset: python generate_test_data_cvusa.py

  • CVACT dataset: python generate_test_data_cvact.py

Readers are encouraged to visit "https://github.com/Liumouliu/OriCNN" to access codes for evaluation on the fine-grained geo-localization CVACT_test set.

Models:

Our trained models for CVUSA and CVACT are available in here.

There is also an "Initialize" model for your own training step. The VGG16 part in the "Initialize" model is initialised by the online model and other parts are initialised randomly.

Please put them under the director of "Model/" and then you can use them for training or evaluation.

Publications

This work is published in CVPR 2020.
[Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching]

If you are interested in our work and use our code, we are pleased that you can cite the following publication:
Yujiao Shi, Xin Yu, Dylan Campbell, Hongdong Li. Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching.

@inproceedings{shi2020where, title={Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching}, author={Shi, Yujiao and Yu, Xin and Campbell, Dylan and Li, Hongdong}, booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition}, year={2020} }

[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
Hierarchical Few-Shot Generative Models

Hierarchical Few-Shot Generative Models Giorgio Giannone, Ole Winther This repo contains code and experiments for the paper Hierarchical Few-Shot Gene

Giorgio Giannone 6 Dec 12, 2022
Contour-guided image completion with perceptual grouping (BMVC 2021 publication)

Contour-guided Image Completion with Perceptual Grouping Authors Morteza Rezanejad*, Sidharth Gupta*, Chandra Gummaluru, Ryan Marten, John Wilder, Mic

Sid Gupta 6 Dec 27, 2022
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Modelisation on galaxy evolution using PEGASE-HR

model_galaxy Modelisation on galaxy evolution using PEGASE-HR This is a labwork done in internship at IAP directed by Damien Le Borgne (https://github

Adrien Anthore 1 Jan 14, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Anatomy of Matplotlib -- tutorial developed for the SciPy conference

Introduction This tutorial is a complete re-imagining of how one should teach users the matplotlib library. Hopefully, this tutorial may serve as insp

Matplotlib Developers 1.1k Dec 29, 2022
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
Learning Features with Parameter-Free Layers (ICLR 2022)

Learning Features with Parameter-Free Layers (ICLR 2022) Dongyoon Han, YoungJoon Yoo, Beomyoung Kim, Byeongho Heo | Paper NAVER AI Lab, NAVER CLOVA Up

NAVER AI 65 Dec 07, 2022
Open-Domain Question-Answering for COVID-19 and Other Emergent Domains

Open-Domain Question-Answering for COVID-19 and Other Emergent Domains This repository contains the source code for an end-to-end open-domain question

7 Sep 27, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Differentiable simulation for system identification and visuomotor control

gradsim gradSim: Differentiable simulation for system identification and visuomotor control gradSim is a unified differentiable rendering and multiphy

105 Dec 18, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
Python SDK for building, training, and deploying ML models

Overview of Kubeflow Fairing Kubeflow Fairing is a Python package that streamlines the process of building, training, and deploying machine learning (

Kubeflow 325 Dec 13, 2022