On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

Related tags

Deep LearningSOLT-GNN
Overview

On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks

We provide the code (in PyTorch) and datasets for our paper "On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks" (SOLT-GNN for short), which is published in WWW-2022.

1. Descriptions

The repository is organised as follows:

  • dataset/: the original data and sampled subgraphs of the five benchmark datasets.
  • main.py: the main entry of tail graph classificaiton for SOLT-GIN.
  • gin.py: base GIN model.
  • PatternMemory.py: the module of pattern memory.
  • utils.py: contains tool functions for loading the data and data split.
  • subgraph_sample.py: contains codes for subgraph sampling.

2. Requirements

  • Python-3.8.5
  • Pytorch-1.8.1
  • Networkx-2.4
  • numpy-1.18.1

3. Running experiments

Experimental environment

Our experimental environment is Ubuntu 20.04.1 LTS (GNU/Linux 5.8.0-55-generic x86_64), and we train our model using NVIDIA GeForce RTX 1080 GPU with CUDA 11.0.

How to run

(1) First run subgraph_sample.py to complete the step of subgraph sampling before running the main.py. Note that, the sampled subgraph data may occupy some storage space.

  • python subgraph_sample.py

(2) Tail graph classification:

  • python main.py --dataset PTC --K 72 --alpha 0.3 --mu1 1.5 --mu2 1.5
  • python main.py --dataset PROTEINS --K 251 --alpha 0.15 --mu1 2 --mu2 2
  • python main.py --dataset DD --K 228 --alpha 0.1 --mu1 0.5 --mu2 0.5
  • python main.py --dataset FRANK --K 922 --alpha 0.1 --mu1 2 --mu2 0
  • python main.py --dataset IMDBBINARY --K 205 --alpha 0.15 --mu1 1 --mu2 1

Note

  • We repeat the experiments for five times and average the results for report (with standard deviation). Note that, for the five runs, we employ seeds {0, 1, 2, 3, 4} for parameters initialization, respectively.
  • The change of experimental environment (including the Requirements) may result in performance fluctuation for both the baselines and our SOLT-GNN. To reproduce the results in the paper, please set the experimental environment as illustrated above as much as possible. The utilized parameter settings are illustrated in the python commands. Note that, for the possible case of SOLT-GNN performing a bit worse which originates from environment change, the readers can further tune the parameters, including $\mu_1$, $\mu_2$, $\alpha$ and $d_m$. In particular, for these four hyper-parameters, we recommend the authors to tune them in {0.1, 0.5, 1, 1.5, 2}, {0.1, 0.5, 1, 1.5, 2}, {0.05, 0.1, 0.15, 0.2, 0.25, 0.3}, {16, 32, 64, 128}, respectively. As the performance of SOLT-GIN highly relates to GIN, so the tuning of hyper-parameters for GIN is encouraged. When tuning the hyper-parameters for SOLT-GNN, please first fix the configuration of GIN for efficiency.
  • To run the model on your own datasets, please refer to the following part (4. Input Data Format) for the dataset format.
  • The implementation of SOLT-GNN is based on the official implementation of GIN (https://github.com/weihua916/powerful-gnns).
  • To tune the other hyper-parameters, please refer to main.py for more details.
    • In particular, for the number of head graphs (marked as K in the paper) in each dataset, which decides the division of the heads/tails, the readers can tune K to explore the effect of different head/tail divisions.
    • Parameters $n_n$ and $n_g$ are the number of triplets for node- and subgraph-levels we used in the training, respectively. Performance improvement might be achieved by appropriately increasing the training triplets.

4. Input Data Format

In order to run SOLT-GNN on your own datasets, here we provide the input data format for SOLT-GNN as follows.

Each dataset XXX only contains one file, named as XXX.txt. Note that, in each dataset, we have a number of graphs. In particular, for each XXX.txt,

  • The first line only has one column, which is the number of graphs (marked as N) contained in this dataset; and the following part of this XXX.txt file is the data of each graph, including a total of N graphs.
  • In the data of each graph, the first line has two columns, which denote the number of nodes (marked as n) in this graph and the label of this graph, respectively. Following this line, there are n lines, with the i-th line corresponding to the information of node i in this graph (index i starts from 0). In each of these n lines (n nodes), the first column is the node label, the second column is the number of its neighbors (marked as m), and the following m columns correspond to the indeces (ids) of its neighbors.
    • Therefore, each graph has n+1 lines.

5. Cite

@inproceedings{liu2022onsize,
  title={On Size-Oriented Long-Tailed Graph Classification of Graph Neural Networks},
  author={Liu, Zemin and Mao, Qiheng and Liu, Chenghao and Fang, Yuan and Sun, Jianling},
  booktitle={Proceedings of the ACM Web Conference 2022},
  year={2022}
}

6. Contact

If you have any questions on the code and data, please contact Qiheng Mao ([email protected]).

Owner
Zemin Liu
My email address : liuzemin [AT] zju [DOT] edu [DOT] cn, liu [DOT] zemin [AT] hotmail [DOT] com
Zemin Liu
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding, top-down-bottom-up, and attention (consensus between columns)

GLOM - Pytorch (wip) An attempt at the implementation of Glom, Geoffrey Hinton's new idea that integrates neural fields, predictive coding,

Phil Wang 173 Dec 14, 2022
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Bayesian algorithm execution (BAX)

Bayesian Algorithm Execution (BAX) Code for the paper: Bayesian Algorithm Execution: Estimating Computable Properties of Black-box Functions Using Mut

Willie Neiswanger 38 Dec 08, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Code for Learning Manifold Patch-Based Representations of Man-Made Shapes, in ICLR 2021.

LearningPatches | Webpage | Paper | Video Learning Manifold Patch-Based Representations of Man-Made Shapes Dmitriy Smirnov, Mikhail Bessmeltsev, Justi

Dima Smirnov 22 Nov 14, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
Quickly comparing your image classification models with the state-of-the-art models (such as DenseNet, ResNet, ...)

Image Classification Project Killer in PyTorch This repo is designed for those who want to start their experiments two days before the deadline and ki

349 Dec 08, 2022
Baseline of DCASE 2020 task 4

Couple Learning for SED This repository provides the data and source code for sound event detection (SED) task. The improvement of the Couple Learning

21 Oct 18, 2022
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022
This package contains deep learning models and related scripts for RoseTTAFold

RoseTTAFold This package contains deep learning models and related scripts to run RoseTTAFold This repository is the official implementation of RoseTT

1.6k Jan 03, 2023
RL-driven agent playing tic-tac-toe on starknet against challengers.

tictactoe-on-starknet RL-driven agent playing tic-tac-toe on starknet against challengers. GUI reference: https://pythonguides.com/create-a-game-using

21 Jul 30, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
PySlowFast: video understanding codebase from FAIR for reproducing state-of-the-art video models.

PySlowFast PySlowFast is an open source video understanding codebase from FAIR that provides state-of-the-art video classification models with efficie

Meta Research 5.3k Jan 03, 2023
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022