This repository contains the code for the paper "SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks"

Overview

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks (CVPR 2021 Oral)

Paper

This repository contains the official PyTorch implementation of:

SCANimate: Weakly Supervised Learning of Skinned Clothed Avatar Networks

Full paper | 5min Presentation | Video | Project website | Poster

Installation

Please follow the instructions in ./installation.txt to install the environment and the SMPL model.

Run SCANimate

0. Activate the environment if it is not already activated:

$ source ./venv/scanimate/bin/activate

1. First download the pretrained model, some motion sequences and other files for the demo

  • Download an AIST++ dance motion sequence for test (CC BY 4.0 license):
$ . ./download_aist_demo_motion.sh

​ This script will create a data folder under current directory, please make sure to put it under the SCANimate directory.

  • Download pre-trained scanimats for animation test: Please visit https://scanimate.is.tue.mpg.de/download.php, register, login, read and agree to the license and then download some demo scanimats. Unzip the zip file into ./data directory

  • Download subset of CAPE data for training demo: Please visit https://scanimate.is.tue.mpg.de/download.php, register, login, read and agree to the license and then download the data for training demo. Unzip the zip file into ./data directory.

  • Now you should have a ./data directory under SCANimate. Within ./data you will have 5 directories: minimal_body, pretrained, pretrained_configs, test, and train.

Run animation demos:

2. Now you can run the test demo with the following command:

$ python -m apps.test_scanimate -c ./data/pretrained_configs/release_03223_shortlong.yaml -t ./data/test/gLO_sBM_cAll_d14_mLO1_ch05
  • You can replace the configuration file with other files under ./data/pretrained_configs/ to try other subjects.
  • You can also replace the test motions with others under ./data/test.
  • The result will be generated under ./demo_result/results_test.

3. The generated mesh sequences can be rendered with the code under ./demo_result:

First, install Open3D (for rendering the results) by:

$ pip install open3d==0.12.0

Then run:

$ python render/render_aist.py -i demo_result/results_test/release_03223_shortlong_test_gLO_sBM_cAll_d14_mLO1_ch05/ -o demo_result

Run training demo

2. Now you can run the demo training with

$ python -m apps.train_scanimate -c ./configs/example.yaml

The results can be found under ./demo_result/results/example.

3. Train on your own data Make your data the same structure as in the ./data/train/example_03375_shortlong, where a .ply file contains a T-pose SMPL body mesh and a folder containing training frames. Each frame corresponds to two files: one .npz files containing SMPL parameters that describes the body and one .ply file containing the clothed scan. The body should align with the scan. Then, change the ./configs/example.yaml to point to your data directory and you are good to go!

Citations

If you find our code or paper useful to your research, please consider citing:

@inproceedings{Saito:CVPR:2021,
  title = {{SCANimate}: Weakly Supervised Learning of Skinned Clothed Avatar Networks},
  author = {Saito, Shunsuke and Yang, Jinlong and Ma, Qianli and Black, Michael J.},
  booktitle = {Proceedings IEEE/CVF Conf.~on Computer Vision and Pattern Recognition (CVPR)},
  month = jun,
  year = {2021},
  month_numeric = {6}}
An Implementation of the FOTS: Fast Oriented Text Spotting with a Unified Network

FOTS: Fast Oriented Text Spotting with a Unified Network Introduction This is a pytorch re-implementation of FOTS: Fast Oriented Text Spotting with a

GeorgeJoe 171 Aug 04, 2022
Smart computer vision application

Smart-computer-vision-application Backend : opencv and python Library required:

2 Jan 31, 2022
A bot that plays TFT using OCR. Keeps track of bench, board, items, and plays the user defined team comp.

NOTES: To ensure best results, make sure you are running this on a computer that has decent specs. 1920x1080 fullscreen is required in League, game mu

francis 125 Dec 30, 2022
Visual Attention based OCR

Attention-OCR Authours: Qi Guo and Yuntian Deng Visual Attention based OCR. The model first runs a sliding CNN on the image (images are resized to hei

Yuntian Deng 1.1k Jan 02, 2023
An advanced 2D image manipulation with features such as edge detection and image segmentation built using OpenCV

OpenCV-ToothPaint3-Advanced-Digital-Image-Editor This application named ‘Tooth Paint’ version TP_2020.3 (64-bit) or version 3 was developed within a w

JunHong 1 Nov 05, 2021
A curated list of resources dedicated to scene text localization and recognition

Scene Text Localization & Recognition Resources A curated list of resources dedicated to scene text localization and recognition. Any suggestions and

CarlosTao 1.6k Dec 22, 2022
Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, rastreia padrões de gestos em vez de um mouse físico.

mouserController Script para controlar o movimento do mouse usando Python e openCV com câmera em tempo real que detecta pontos de referência da mão, r

Vinícius Azevedo 6 Jun 28, 2022
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
OpenGait is a flexible and extensible gait recognition project

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Extracting Tables from Document Images using a Multi-stage Pipeline for Table Detection and Table Structure Recognition:

Multi-Type-TD-TSR Check it out on Source Code of our Paper: Multi-Type-TD-TSR Extracting Tables from Document Images using a Multi-stage Pipeline for

Pascal Fischer 178 Dec 27, 2022
An unofficial implementation of the paper "AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss".

AutoVC: Zero-Shot Voice Style Transfer with Only Autoencoder Loss This is an unofficial implementation of AutoVC based on the official one. The reposi

Chien-yu Huang 27 Jun 16, 2022
This is the code for our paper DAAIN: Detection of Anomalous and AdversarialInput using Normalizing Flows

Merantix-Labs: DAAIN This is the code for our paper DAAIN: Detection of Anomalous and Adversarial Input using Normalizing Flows which can be found at

Merantix 14 Oct 12, 2022
[EMNLP 2021] Improving and Simplifying Pattern Exploiting Training

ADAPET This repository contains the official code for the paper: "Improving and Simplifying Pattern Exploiting Training". The model improves and simpl

Rakesh R Menon 138 Dec 26, 2022
Awesome anomaly detection in medical images

A curated list of awesome anomaly detection works in medical imaging, inspired by the other awesome-* initiatives.

Kang Zhou 57 Dec 19, 2022
A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database.

A facial recognition device is a device that takes an image or a video of a human face and compares it to another image faces in a database. The structure, shape and proportions of the faces are comp

Pavankumar Khot 4 Mar 19, 2022
Convert Text-to Handwriting Using Python

Convert Text-to Handwriting Using Python Description In this project we'll use python library that's "pywhatkit" for converting text to handwriting. t

8 Nov 19, 2022
Maze generator and solver with python

Procedural-Maze-Generator-Algorithms Check out my youtube channel : Auctux Ressources Thanks to Jamis Buck Book : Mazes for programmers Requirements P

Joseph 19 Dec 07, 2022
A simple QR-Code Reader in Python

A simple QR-Code Reader written in Python, that copies the content of a QR-Code directly into the copy clipboard.

Eric 1 Oct 28, 2021
This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe libraries.

CVZone This is a Computer vision package that makes its easy to run Image processing and AI functions. At the core it uses OpenCV and Mediapipe librar

CVZone 648 Dec 30, 2022
Detect handwritten words in a text-line (classic image processing method).

Word segmentation Implementation of scale space technique for word segmentation as proposed by R. Manmatha and N. Srimal. Even though the paper is fro

Harald Scheidl 190 Jan 03, 2023