[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

Overview

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

1S-Lab, Nanyang Technological University  2SenseTime Research  3Shanghai AI Laboratory
*equal contribution  +corresponding author

Accepted to SIGGRAPH 2022 (Journal Track)

TL;DR

AvatarCLIP generate and animate avatars given descriptions of body shapes, appearances and motions.

A tall and skinny female soldier that is arguing. A skinny ninja that is raising both arms. An overweight sumo wrestler that is sitting. A tall and fat Iron Man that is running.

This repository contains the official implementation of AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars.


[Project Page][arXiv][High-Res PDF (166M)][Supplementary Video][Colab Demo]

Updates

[05/2022] Paper uploaded to arXiv. arXiv

[05/2022] Add a Colab Demo for avatar generation! Open In Colab

[05/2022] Support converting the generated avatar to the animatable FBX format! Go checkout how to use the FBX models. Or checkout the instructions for the conversion codes.

[05/2022] Code release for avatar generation part!

[04/2022] AvatarCLIP is accepted to SIGGRAPH 2022 (Journal Track) 🥳 !

Citation

If you find our work useful for your research, please consider citing the paper:

@article{hong2022avatarclip,
    title={AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars},
    author={Hong, Fangzhou and Zhang, Mingyuan and Pan, Liang and Cai, Zhongang and Yang, Lei and Liu, Ziwei},
    journal={ACM Transactions on Graphics (TOG)},
    volume={41},
    number={4},
    articleno={161},
    pages={1--19},
    year={2022},
    publisher={ACM New York, NY, USA},
    doi={10.1145/3528223.3530094},
}

Use Generated FBX Models

Download

Go visit our project page. Go to the section 'Avatar Gallery'. Pick a model you like. Click 'Load Model' below. Click 'Download FBX' link at the bottom of the pop-up viewer.

Import to Your Favourite 3D Software (e.g. Blender, Unity3D)

The FBX models are already rigged. Use your motion library to animate it!

Upload to Mixamo

To make use of the rich motion library provided by Mixamo, you can also upload the FBX model to Mixamo. The rigging process is completely automatic!

Installation

We recommend using anaconda to manage the python environment. The setup commands below are provided for your reference.

git clone https://github.com/hongfz16/AvatarCLIP.git
cd AvatarCLIP
conda create -n AvatarCLIP python=3.7
conda activate AvatarCLIP
conda install pytorch==1.7.0 torchvision==0.8.0 torchaudio==0.7.0 cudatoolkit=10.1 -c pytorch
pip install -r requirements.txt

Other than the above steps, you should also install neural_renderer following its instructions. Before compiling neural_renderer (or after compiling should also be fine), remember to add the following three lines to neural_renderer/perspective.py after line 19.

x[z<=0] = 0
y[z<=0] = 0
z[z<=0] = 0

This quick fix is for a rendering issue where objects behide the camera will also be rendered. Be careful when using this fixed version of neural_renderer on your other projects, because this fix will cause the rendering process not differentiable.

Data Preparation

Download SMPL Models

Register and download SMPL models here. Put the downloaded models in the folder smpl_models. The folder structure should look like

./
├── ...
└── smpl_models/
    ├── smpl/
        ├── SMPL_FEMALE.pkl
        ├── SMPL_MALE.pkl
        └── SMPL_NEUTRAL.pkl

Download Pretrained Models & Other Data

This download is only for coarse shape generation. You can skip if you only want to use other parts. Download the pretrained weights and other required data here. Put them in the folder AvatarGen so that the folder structure should look like

./
├── ...
└── AvatarGen/
    └── ShapeGen/
        └── data/
            ├── codebook.pth
            ├── model_VAE_16.pth
            ├── nongrey_male_0110.jpg
            ├── smpl_uv.mtl
            └── smpl_uv.obj

Avatar Generation

Coarse Shape Generation

Folder AvatarGen/ShapeGen contains codes for this part. Run the follow command to generate the coarse shape corresponding to the shape description 'a strong man'. We recommend to use the prompt augmentation 'a 3d rendering of xxx in unreal engine' for better results. The generated coarse body mesh will be stored under AvatarGen/ShapeGen/output/coarse_shape.

python main.py --target_txt 'a 3d rendering of a strong man in unreal engine'

Then we need to render the mesh for initialization of the implicit avatar representation. Use the following command for rendering.

python render.py --coarse_shape_obj output/coarse_shape/a_3d_rendering_of_a_strong_man_in_unreal_engine.obj --output_folder ${RENDER_FOLDER}

Shape Sculpting and Texture Generation

Note that all the codes are tested on NVIDIA V100 (32GB memory). Therefore, in order to run on GPUs with lower memory, please try to scale down the network or tune down max_ray_num in the config files. You can refer to confs/examples_small/example.conf or our colab demo for a scale-down version of AvatarCLIP.

Folder AvatarGen/AppearanceGen contains codes for this part. We provide data, pretrained model and scripts to perform shape sculpting and texture generation on a zero-beta body (mean shape defined by SMPL). We provide many example scripts under AvatarGen/AppearanceGen/confs/examples. For example, if we want to generate 'Abraham Lincoln', which is defined in the config file confs/examples/abrahamlincoln.conf, use the following command.

python main.py --mode train_clip --conf confs/examples/abrahamlincoln.conf

Results will be stored in AvatarCLIP/AvatarGen/AppearanceGen/exp/smpl/examples/abrahamlincoln.

If you wish to perform shape sculpting and texture generation on the previously generated coarse shape. We also provide example config files in confs/base_models/astrongman.conf confs/astrongman/*.conf. Two steps of optimization are required as follows.

# Initilization of the implicit avatar
python main.py --mode train --conf confs/base_models/astrongman.conf
# Shape sculpting and texture generation on the initialized implicit avatar
python main.py --mode train_clip --conf confs/astrongman/hulk.conf

Marching Cube

To extract meshes from the generated implicit avatar, one may use the following command.

python main.py --mode validate_mesh --conf confs/examples/abrahamlincoln.conf

The final high resolution mesh will be stored as AvatarCLIP/AvatarGen/AppearanceGen/exp/smpl/examples/abrahamlincoln/meshes/00030000.ply

Convert Avatar to FBX Format

For the convenience of using the generated avatar with modern graphics pipeline, we also provide scripts to rig the avatar and convert to FBX format. See the instructions here.

Motion Generation

TBA

License

Distributed under the MIT License. See LICENSE for more information.

Related Works

There are lots of wonderful works that inspired our work or came around the same time as ours.

Dream Fields enables zero-shot text-driven general 3D object generation using CLIP and NeRF.

Text2Mesh proposes to edit a template mesh by predicting offsets and colors per vertex using CLIP and differentiable rendering.

CLIP-NeRF can manipulate 3D objects represented by NeRF with natural languages or examplar images by leveraging CLIP.

Text to Mesh facilitates zero-shot text-driven general mesh generation by deforming from a sphere mesh guided by CLIP.

MotionCLIP establishes a projection from the CLIP text space to the motion space through supervised training, which leads to amazing text-driven motion generation results.

Acknowledgements

This study is supported by NTU NAP, MOE AcRF Tier 2 (T2EP20221-0033), and under the RIE2020 Industry Alignment Fund – Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from the industry partner(s).

We thank the following repositories for their contributions in our implementation: NeuS, smplx, vposer, Smplx2FBX.

基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time

Semi Hand-Object Semi-Supervised 3D Hand-Object Poses Estimation with Interactions in Time (CVPR 2021).

96 Dec 27, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Kaggle Ultrasound Nerve Segmentation competition [Keras]

Ultrasound nerve segmentation using Keras (1.0.7) Kaggle Ultrasound Nerve Segmentation competition [Keras] #Install (Ubuntu {14,16}, GPU) cuDNN requir

179 Dec 28, 2022
A library for augmentation of a YOLO-formated dataset

YOLO Dataset Augmentation lib Инструкция по использованию этой библиотеки Запуск всех файлов осуществлять из консоли. GoogleCrawl_to_Dataset.py Это ск

Egor Orel 1 Dec 10, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
A repository for the paper "Improved Adversarial Systems for 3D Object Generation and Reconstruction".

Improved Adversarial Systems for 3D Object Generation and Reconstruction: This is a repository for the paper "Improved Adversarial Systems for 3D Obje

Edward Smith 188 Dec 25, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Callable PyTrees and filtered JIT/grad transformations => neural networks in JAX.

Equinox Callable PyTrees and filtered JIT/grad transformations = neural networks in JAX Equinox brings more power to your model building in JAX. Repr

Patrick Kidger 909 Dec 30, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
MG-GCN: Scalable Multi-GPU GCN Training Framework

MG-GCN MG-GCN: multi-GPU GCN training framework. For more information, please read our paper. After cloning our repository, run git submodule update -

Translational Data Analytics (TDA) Lab @GaTech 6 Oct 24, 2022
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

DV Lab 21 Nov 28, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022
PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

PyTorch implementation of "Supervised Contrastive Learning" (and SimCLR incidentally)

Yonglong Tian 2.2k Jan 08, 2023
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Codes-for-Algorithms Codes for realizing theories learned from Data Mining, Machine Learning, Deep Learning without using the present Python packages.

Tracy (Shengmin) Tao 1 Apr 12, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022