SIGIR'22 paper: Axiomatically Regularized Pre-training for Ad hoc Search

Overview

img

THUIR License made-with-python code-size

Introduction

This codebase contains source-code of the Python-based implementation (ARES) of our SIGIR 2022 paper.

Requirements

  • python 3.7
  • torch==1.9.0
  • transformers==4.9.2
  • tqdm, nltk, numpy, boto3
  • trec_eval for evaluation on TREC DL 2019
  • anserini for generating "RANK" axiom scores

Why this repo?

In this repo, you can pre-train ARESsimple and TransformerICT models, and fine-tune all pre-trained models with the same architecture as BERT. The papers are listed as follows:

You can download the pre-trained ARES checkpoint ARESsimple from Google drive and extract it.

Pre-training Data

Download data

Download the MS MARCO corpus from the official website.
Download the ADORE+STAR Top100 Candidates files from this repo.

Pre-process data

To save memory, we store most files using the numpy memmap or jsonl format in the ./preprocess directory.

Document files:

  • doc_token_ids.memmap: each line is the token ids for a document
  • docid2idx.json: {docid: memmap_line_id}

Query files:

  • queries.doctrain.jsonl: MS MARCO training queries {"id" qid, "ids": token_ids} for each line
  • queries.docdev.jsonl: MS MARCO validating queries {"id" qid, "ids": token_ids} for each line
  • queries.dl2019.jsonl: TREC DL 2019 queries {"id" qid, "ids": token_ids} for each line

Human label files:

  • msmarco-doctrain-qrels.tsv: qid 0 docid 1 for training set
  • dev-qrels.txt: qid relevant_docid for validating set
  • 2019qrels-docs.txt: qid relevant_docid for TREC DL 2019 set

Top 100 candidate files:

  • train.rank.tsv, dev.rank.tsv, test.rank.tsv: qid docid rank for each line

Pseudo queries and axiomatic features:

  • doc2qs.jsonl: {"docid": docid, "queries": [qids]} for each line
  • sample_qs_token_ids.memmap: each line is the token ids for a pseudo query
  • sample_qid2id.json: {qid: memmap_line_id}
  • axiom.memmap: axiom can be one of the ['rank', 'prox-1', 'prox-2', 'rep-ql', 'rep-tfidf', 'reg', 'stm-1', 'stm-2', 'stm-3'], each line is an axiomatic score for a query

Quick Start

Note that to accelerate the training process, we adopt the parallel training technique. The scripts for pre-training and fine-tuning are as follow:

Pre-training

export BERT_DIR=/path/to/bert-base/
export XGB_DIR=/path/to/xgboost.model

cd pretrain

CUDA_VISIBLE_DEVICES=0,1,2,3,4,5 NCCL_BLOCKING_WAIT=1 \
python  -m torch.distributed.launch --nproc_per_node=6 --nnodes=1 train.py \
        --model_type ARES \
        --PRE_TRAINED_MODEL_NAME BERT_DIR \
        --gpu_num 6 --world_size 6 \
        --MLM --axiom REP RANK REG PROX STM \
        --clf_model XGB_DIR

Here model type can be ARES or ICT.

Zero-shot evaluation (based on AS top100)

export MODEL_DIR=/path/to/ares-simple/
export CKPT_NAME=ares.ckpt

cd finetune

CUDA_VISIBLE_DEVICES=0 python train.py \
        --test \
        --PRE_TRAINED_MODEL_NAME MODEL_DIR \
        --model_type ARES \
        --model_name ARES_simple \
        --load_ckpt \
        --model_path CKPT_NAME

You can get:

#####################
<----- MS Dev ----->
MRR @10: 0.2991
MRR @100: 0.3130
QueriesRanked: 5193
#####################

on MS MARCO dev set and:

#############################
<--------- DL 2019 --------->
QueriesRanked: 43
nDCG @10: 0.5955
nDCG @100: 0.4863
#############################

on DL 2019 set.

Fine-tuning

export MODEL_DIR=/path/to/ares-simple/

cd finetune

CUDA_VISIBLE_DEVICES=0,1,2,3 NCCL_BLOCKING_WAIT=1 \
python -m torch.distributed.launch --nproc_per_node=4 --nnodes=1 train.py \
        --model_type ARES \
        --distributed_train \
        --PRE_TRAINED_MODEL_NAME MODEL_DIR \
        --gpu_num 4 --world_size 4 \
        --model_name ARES_simple

Visualization

export MODEL_DIR=/path/to/ares-simple/
export SAVE_DIR=/path/to/output/
export CKPT_NAME=ares.ckpt

cd visualization

CUDA_VISIBLE_DEVICES=0 python visual.py \
    --PRE_TRAINED_MODEL_NAME MODEL_DIR \
    --model_name ARES_simple \
    --visual_q_num 1 \
    --visual_d_num 5 \
    --save_path SAVE_DIR \
    --model_path CKPT_NAME

Results

Zero-shot performance:

Model Name MS MARCO [email protected] MS MARCO [email protected] DL [email protected] DL [email protected] COVID EQ
BM25 0.2962 0.3107 0.5776 0.4795 0.4857 0.6690
BERT 0.1820 0.2012 0.4059 0.4198 0.4314 0.6055
PROPwiki 0.2429 0.2596 0.5088 0.4525 0.4857 0.5991
PROPmarco 0.2763 0.2914 0.5317 0.4623 0.4829 0.6454
ARESstrict 0.2630 0.2785 0.4942 0.4504 0.4786 0.6923
AREShard 0.2627 0.2780 0.5189 0.4613 0.4943 0.6822
ARESsimple 0.2991 0.3130 0.5955 0.4863 0.4957 0.6916

Few-shot performance: img

Visualization (attribution values have been normalized within a document): img

Citation

If you find our work useful, please do not save your star and cite our work:

@inproceedings{chen2022axiomatically,
  title={Axiomatically Regularized Pre-training for Ad hoc Search},
  author={Chen, Jia and Liu, Yiqun and Fang, Yan and Mao, Jiaxin and Fang, Hui and Yang, Shenghao and Xie, Xiaohui and Zhang, Min and Ma, Shaoping},
  booktitle={Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval},
  year={2022}
}

Notice

  • Please make sure that all the pre-trained model parameters have been loaded correctly, or the zero-shot and the fine-tuning performance will be greatly impacted.
  • We welcome anyone who would like to contribute to this repo. 🤗
  • If you have any other questions, please feel free to contact me via [email protected] or open an issue.
  • Code for data preprocessing will come soon. Please stay tuned~
Owner
Jia Chen
My life is a beauty. 🦋
Jia Chen
The code from the whylogs workshop in DataTalks.Club on 29 March 2022

whylogs Workshop The code from the whylogs workshop in DataTalks.Club on 29 March 2022 whylogs - The open source standard for data logging (Don't forg

DataTalksClub 12 Sep 05, 2022
Implementation of Token Shift GPT - An autoregressive model that solely relies on shifting the sequence space for mixing

Token Shift GPT Implementation of Token Shift GPT - An autoregressive model that relies solely on shifting along the sequence dimension and feedforwar

Phil Wang 32 Oct 14, 2022
숭실대학교 컴퓨터학부 전공종합설계프로젝트

✨ 시각장애인을 위한 버스도착 알림 장치 ✨ 👀 개요 현대 사회에서 대중교통 위치 정보를 이용하여 사람들이 간단하게 이용할 대중교통의 정보를 얻고 쉽게 대중교통을 이용할 수 있다. 해당 정보는 각종 어플리케이션과 대중교통 이용시설에서 위치 정보를 제공하고 있지만 시각

taegyun 3 Jan 25, 2022
Voice Assistant inspired by Google Assistant, Cortana, Alexa, Siri, ...

author: @shival_gupta VoiceAI This program is an example of a simple virtual assitant It will listen to you and do accordingly It will begin with wish

Shival Gupta 1 Jan 06, 2022
spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines

spaCy-wrap: For Wrapping fine-tuned transformers in spaCy pipelines spaCy-wrap is minimal library intended for wrapping fine-tuned transformers from t

Kenneth Enevoldsen 32 Dec 29, 2022
华为商城抢购手机的Python脚本 Python script of Huawei Store snapping up mobile phones

HUAWEI STORE GO 2021 说明 基于Python3+Selenium的华为商城抢购爬虫脚本,修改自近两年没更新的项目BUY-HW,为女神抢Nova 8(什么时候华为开始学小米玩饥饿营销了?) 原项目的登陆以及抢购部分已经不可用,本项目对原项目进行了改正以适应新华为商城,并增加一些功能

ZhangLiang 111 Dec 22, 2022
GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning

GrammarTagger — A Neural Multilingual Grammar Profiler for Language Learning GrammarTagger is an open-source toolkit for grammatical profiling for lan

Octanove Labs 27 Jan 05, 2023
Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API

gpt3-instruct-sandbox Interactive Jupyter Notebook Environment for using the GPT-3 Instruct API Description This project updates an existing GPT-3 san

312 Jan 03, 2023
Tools for curating biomedical training data for large-scale language modeling

Tools for curating biomedical training data for large-scale language modeling

BigScience Workshop 242 Dec 25, 2022
Official source for spanish Language Models and resources made @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish Language Models 💃🏻 Corpora 📃 Corpora Number of documents Size (GB) BNE 201,080,084 570GB Models 🤖 RoBERTa-base BNE: https://huggingface.co

PlanTL-SANIDAD 203 Dec 20, 2022
A 10000+ hours dataset for Chinese speech recognition

A 10000+ hours dataset for Chinese speech recognition

309 Dec 16, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
Input english text, then translate it between languages n times using the Deep Translator Python Library.

mass-translator About Input english text, then translate it between languages n times using the Deep Translator Python Library. How to Use Install dep

2 Mar 04, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Python library for interactive topic model visualization. Port of the R LDAvis package.

pyLDAvis Python library for interactive topic model visualization. This is a port of the fabulous R package by Carson Sievert and Kenny Shirley. pyLDA

Ben Mabey 1.7k Dec 20, 2022
Official PyTorch implementation of SegFormer

SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers Figure 1: Performance of SegFormer-B0 to SegFormer-B5. Project page

NVIDIA Research Projects 1.4k Dec 29, 2022
Opal-lang - A WIP programming language based on Python

thanks to aphitorite for the beautiful logo! opal opal is a WIP transcompiled pr

3 Nov 04, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
fastNLP: A Modularized and Extensible NLP Framework. Currently still in incubation.

fastNLP fastNLP是一款轻量级的自然语言处理(NLP)工具包,目标是快速实现NLP任务以及构建复杂模型。 fastNLP具有如下的特性: 统一的Tabular式数据容器,简化数据预处理过程; 内置多种数据集的Loader和Pipe,省去预处理代码; 各种方便的NLP工具,例如Embedd

fastNLP 2.8k Jan 01, 2023
This repository contains the codes for LipGAN. LipGAN was published as a part of the paper titled "Towards Automatic Face-to-Face Translation".

LipGAN Generate realistic talking faces for any human speech and face identity. [Paper] | [Project Page] | [Demonstration Video] Important Update: A n

Rudrabha Mukhopadhyay 438 Dec 31, 2022