Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Overview

Sky Computing

Introduction

Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to devices based on the their hardware sepcification. Sky Computing outperforms the baseline method by 55% in training time when training 160-layer BERT in a 64-node cluster. Our paper can be found at https://arxiv.org/abs/2202.11836

The concept sky computing was first introduced by Dr. Katarzyna Keahey et al. They used this word to describe a cross-cloud compute pattern. And later Prof. Stoica and Prof. Shenker generalized this word to geo-distributed computing. Our project is based on their definition. [1] [2]

Installation

git clone [email protected]:hpcaitech/SkyComputing.git
python -m pip install -r requirements.txt
cd ./scaelum
python -m pip install -v -e .

Experiment (using BERT)

To benchmark the Sky Computing, we prepared a single demo which you can run on your cluster to train BERT.

Prepare BERT model

Bidirectional Encoder Representations from Transformers (aka BERT) is one of the state-of-the-art deep learning models for Natural Language Processing. In the experiment part, we use BERT to run a simple benchmark.

cd $PROJECT
mkdir -p BERT/model && cd BERT/model 
wget https://storage.googleapis.com/bert_models/2019_05_30/wwm_uncased_L-24_H-1024_A-16.zip
unzip wwm_uncased_L-24_H-1024_A-16.zip

Prepare GLUE MNLI dataset

The General Language Understanding Evaluation (aka GLUE) benchmark is a collection of resources for training, evaluating, and analyzing natural language understanding systems. And the Multi-Genre Natural Language Inference (aka MNLI) is one of the tasks in GLUE, it is a crowd-sourced collection of 433k sentence pairs annotated with textual entailment information.

cd $PROJECT
mkdir -p BERT/data && cd BERT/data
wget https://gist.githubusercontent.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e/raw/1502038877f6a88c225a34450793fbc3ea87eaba/download_glue_data.py
python download_glue_data.py --data_dir ./glue_data --tasks MNLI

Configuration

To run dllb in your cluster, you need to write a config file which contains the necessary information about training, e.g. model layers, useful environment variables. We have provided a well-commentted example, and here are some most important option:

# your project path
PROJECT = os.getenv("PROJECT")

# allocation type, valid values are even, optimal and dynamic
ALLOCATE_TYPE = "even"

# num of node (including the central server)
CORE_NUM = 4

Run scripts

Slurm is an open source, fault-tolerant, and highly scalable cluster management and job scheduling system for large and small Linux clusters. We used slurm script to run our experiment.

#!/bin/sh

#SBATCH --job-name=gpu16   # Job name
#SBATCH -o gpu16.o%j       # Name of stdout output file
#SBATCH -e gpu16.e%j       # Name of stderr error file
#SBATCH -N 16              # Node numbers
#SBATCH -n 16              # GPU numbers
#SBATCH --time=02:00:00    # Run time (hh:mm:ss)

# run
python ./ip_addr.py > "./HOST"
srun python ./launch.py -c "./experiment/config.py"

Citation

@misc{zhu2022sky,
      title={Sky Computing: Accelerating Geo-distributed Computing in Federated Learning}, 
      author={Jie Zhu and Shenggui Li and Yang You},
      year={2022},
      eprint={2202.11836},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Reference

@article{keahey2009sky,
  title={Sky computing},
  author={Keahey, Katarzyna and Tsugawa, Mauricio and Matsunaga, Andrea and Fortes, Jose},
  journal={IEEE Internet Computing},
  volume={13},
  number={5},
  pages={43--51},
  year={2009},
  publisher={IEEE}
}
@inproceedings{stoica2021cloud,
  title={From cloud computing to sky computing},
  author={Stoica, Ion and Shenker, Scott},
  booktitle={Proceedings of the Workshop on Hot Topics in Operating Systems},
  pages={26--32},
  year={2021}
}
Owner
HPC-AI Tech
We are a global team to help you train and deploy your AI models
HPC-AI Tech
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
This repository contains the code to replicate the analysis from the paper "Moving On - Investigating Inventors' Ethnic Origins Using Supervised Learning"

Replication Code for 'Moving On' - Investigating Inventors' Ethnic Origins Using Supervised Learning This repository contains the code to replicate th

Matthias Niggli 0 Jan 04, 2022
PyTorch implementation of the WarpedGANSpace: Finding non-linear RBF paths in GAN latent space (ICCV 2021)

Authors official PyTorch implementation of the "WarpedGANSpace: Finding non-linear RBF paths in GAN latent space" [ICCV 2021].

Christos Tzelepis 100 Dec 06, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Efficient Training of Audio Transformers with Patchout

PaSST: Efficient Training of Audio Transformers with Patchout This is the implementation for Efficient Training of Audio Transformers with Patchout Pa

165 Dec 26, 2022
Anonymize BLM Protest Images

Anonymize BLM Protest Images This repository automates @BLMPrivacyBot, a Twitter bot that shows the anonymized images to help keep protesters safe. Us

Stanford Machine Learning Group 40 Oct 13, 2022
HomeAssitant custom integration for dyson

HomeAssistant Custom Integration for Dyson This custom integration is still under development. This is a HA custom integration for dyson. There are se

Xiaonan Shen 232 Dec 31, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022