Pulse sequence builder and compiler for q1asm

Related tags

Miscellaneousq1pulse
Overview

q1pulse

Pulse sequence builder and compiler for q1asm. q1pulse is a simple library to compile pulse sequence to q1asm, the assembly language of Qblox instruments. q1pulse supports loops, variables and expressions that are translated to q1asm.

The current status of q1pulse is quite experimental. Code may change without any backwards compatibility.

This project has several goals:

  • create a driver to use in the backend of pulse_lib
  • provide a very simple API to test QCM and QRM
  • explore the possibilities of q1asm and the QCM and QRM
  • have fun with building a compiler for q1asm.

q1pulse is inspired on pulse_lib. The following features of pulse_lib are not available in q1pulse:

  • Virtual matrix for compensation of capacitive coupling of device gates.
  • Channel delay compensation.
  • Compensation for attenuators on output.
  • DC compensation to discharge bias-T.
  • Bias-T compensation to compensate for high-pass filter. These features will be handled by pulse_lib when q1pulse is used as pulse_lib backend.

q1pulse API

A q1pulse program is written in Python using the q1pulse API. A program consists of instructions like pulses, wait statements, loops and acquisitions for the QCM and QRM sequencers. An instruction can apply to 1 or more sequencers. All instructions are executed in sequential order, unless otherwise specified in a "parallel section". The instruction sequence is synchronized across all the sequencers.

Program and sequences

A program is created for a Q1Instrument. The instrument definition contains the definition of the sequencers and their mapping to the output and input channels of the modules. A program has a sequence for every configured sequencer. The individual sequences can be accessed via an attribute of the program object or as an index of the program object.

Every instruction advances the time of all sequencers, unless otherwise specified. Instructions added to the Program object apply to multiple sequencers simultaneously. Instructions added to a sequence only affect the timing of the other sequences.

A program can have a parallel section. In a parallel section the program time does not advance. So, instructions can be scheduled to overlap. After the parallel section the time is set after the end of all the instructions in the parallel section.

Example program and sequences

This simple program shows the use of program object and sequence objects.

p = instrument.new_program('ramp')

# sequencer P1
P1 = p.P1
# sequencer P2 using indexer
P2 = p['P2']
# sequencer R1 (readout)
R1 = p.R1

R1.add_acquisition_bins('default', 10)

# generate a block pulse of 20 ns and amplitude 0.5 on P1
P1.block_pulse(20, 0.5)
# After that generate a block pulse of 100 ns and amplitude -0.25 on P2
P2.block_pulse(100, -0.25)
# Wait 40 ns after last pulse
p.wait(40)
# generate pulse of 200 ns on P1 and P2 simultaneously with amplitudes 0.5 and -0.5
p.block_pulse(200, [P1, P2], [0.5, -0.5])

# simultaneous pulses using parallel section:
# - a block pulse on P1
# - an overlapping ramp on P2 with an offset of 20 ns
# - acquisition on R1 starts immediately with parallel section (no offset)
# - wait(100) has latest end time and determines total duration of section.
with p.parallel():
    P1.block_pulse(40, -0.1)
    # ramp from 0.05 to 0.4 in 60 ns. Start 20 ns after begin of parallel section
    P2.ramp(60, 0.05, 0.40, t_offset=20)
    R1.acquire('default', 'increment')
    p.wait(100)

Output channels and sequencer instructions

Sequencers can be configured to control 1 or 2 outputs. Sequencers controlling 1 output will most likely be used to directly control a voltage on the target device. Sequencers controlling 2 outputs will most likely be used for the generation of RF signals. Some instructions intended for voltage control, e.g. ramp, will fail on sequencers controlling 2 output channels.

q1pulse instructions

Instruction arguments: floating point and nanoseconds

The arguments that specify an amplitude, offset, gain or phase are all specified as floating point values in the range [-1.0, 1.0]. For amplitude and gain the actual value has to be multiplied with the voltage range of the output channel. The value of the phase is in units of PI. The time in instructions is always specified in nanoseconds.

Program instructions

Program flow and timing instructions:

  • wait(t): wait t ns
  • loop_range, loop_linspace
  • parallel: starts parallel section where time is not incremented automatically

Instructions for simultaneous execution on multiple sequencers where each sequencer is controlling only 1 output:

  • block_pulse
  • ramp
  • set_offsets: Does not advance time.

Notes: ramp instruction does not yet accept variables or expressions as argument.

QCM Sequence instructions

  • add_wave: adds a wave to be used in shaped pulses
  • add_comment: add a comment line in the q1asm
  • set_offset, set_gain, set_phase, shift_phase : Do not advance time.
  • block_pulse
  • shaped_pulse
  • ramp: creates ramp on 1 output

Notes: ramp instruction does not yet accept variables or expressions as argument.

QRM Sequence instructions

QRM can execute all QCM instructions.

QRM specific instructions:

  • add_acquisition: add a (binned) acquisition specification

  • add_acquisition_weights: add specification for weights (TODO)

  • acquire: acquire data, optionally incrementing the bin counter. Doesn't advance time.

  • acquire_weighed:

Variables and expressions

Programs can make use of variables that will be translated to q1asm registers. Variables can be global to the program or local to a sequence. Global variables can be created via the R attribute of the program object, p.R.amplitude = 0.5. Sequence local variables can be created via the Rs attribute of a sequence object, P1.Rs.t_wait = 200. Global variables can be used in program and sequence instructions. Sequence local variables can only be used in sequence instructions.

Variable types

The type of a variable can be either float or int. It is inferred on the first assignment and cannot change within the program. Internally the float variables are represented as 32 bit fixed point values in the range [-1.0, 1.0]. Integers are 32 bit signed int, unless otherwise specified. Where needed and as far as possible the compiler inserts additional q1asm instructions to emulate signed int operations.

Expressions

The following Python operations are supported: +, -, <<, >> and bitwise &, |, ~. Evaluation order is determined by the Python operator rules.

Notes:

  • The shift right operator does an unsigned shift right.
  • There is no overflow checking on integer and fixed point operations. So, 1.0 + 0.5 gives -0.5.

Example

# integers:
p.R.a = 0
p.R.b = p.R.a + 1
p.R.b = 5 + (p.R.a << 1)
p.R.c = p.R.b + p.R.a
p.R.c += 5
p.R.d = 1 - p.R.a

# floating point:
p.R.f = 1.0
p.R.f -= 0.1
p.R.g = 0.5
p.R.h = p.R.f - p.R.g

# sequence variables:
P1.Rs.x = 9
P1.Rs.y = P1.Rs.x + p.R.b
P1.Rs.amplitude = p.R.f - 0.2

# use of variables and expressions in instruction arguments
p.wait(p.R.c + 10)
P1.block_pulse(p.R.d, P1.Rs.amplitude)

Loops

Loops can be created on program level and will be executed on all sequences in parallel to ensure synchronized execution of all sequences. There are two types of loops. loop_range creates a loop in q1asm which is similar to for i in range(...). It uses the same arguments as range. loop_linspace creates a loop in q1asm with a fixed point variable which is similar to for x in numpy.linspace(...) It uses the same arguments as numpy.linspace. The loops should be used with a with statement. The statements return a global variable that can be used as such.

Example

# initialize, varying wait, readout.
with p.loop_range(100, 1000, 10) as t_wait:
    p.block_pulse(200, gates, v_init)
    p.wait(t_wait)
    p.block_pulse(200, gates, v_readout)

# create a staircase
with p.loop_linspace(-0.5, 0.5, 20) as v1:
    P1.block_pulse(200, v1)

Instrument

instrument = Q1Instrument()
instrument.add_qcm(0, qcm0)
instrument.add_qrm(1, qrm1)
# add sequencers with output channels
instrument.add_control('q1', 0, [0,1])
instrument.add_control('P1', 0, [2])
instrument.add_control('P2', 0, [3])
instrument.add_readout('R1', 1, [1])

p = instrument.new_program('my_q1_program')

TODO

  • Refactor code to be separate a driver to use with pulse_lib and a standalone pulse sequence builder.
  • Implement markers
Owner
Sander de Snoo
Sander de Snoo
Procedural 3D data generation pipeline for architecture

Synthetic Dataset Generator Authors: Stanislava Fedorova Alberto Tono Meher Shashwat Nigam Jiayao Zhang Amirhossein Ahmadnia Cecilia bolognesi Dominik

Computational Design Institute 49 Nov 25, 2022
a pull switch (or BYO button) that gets you out of video calls, quick

zoomout a pull switch (or BYO button) that gets you out of video calls, quick. As seen on Twitter System compatibility Tested on macOS Catalina (10.15

Brian Moore 422 Dec 30, 2022
Malicious Document IoC Extractor is a collection of scripts that helps extracting IoCs from various maldoc families.

MDIExtractor Malicious Document IoC Extractor (MDIExtractor) is a collection of scripts that helps extracting IoCs from various maldoc families. Prere

Malwrologist 14 Nov 25, 2022
Tutor plugin for integration of Open edX with a Richie course catalog

Richie plugin for Tutor This is a plugin to integrate Richie, the learning portal CMS, with Open edX. The integration takes the form of a Tutor plugin

Overhang.IO 2 Sep 08, 2022
Python library and cli util for https://www.zerochan.net/

Zerochan Library for Zerochan.net with pics parsing and downloader included! Features CLI utility for pics downloading from zerochan.net Library for c

kiriharu 10 Oct 11, 2022
Refer'd Resume Scanner

Refer'd Resume Scanner I wanted to share a free resource we built to assist applicants with resume building. Our resume scanner identifies potential s

Refer'd 74 Mar 07, 2022
Hands-on machine learning workshop

emb-ntua-workshop This workshop discusses introductory concepts of machine learning and data mining following a hands-on approach using popular tools

ISSEL Soft Eng Team 12 Oct 30, 2022
Telegram bot to upload media to telegra.ph

Telegraph @StarkTelegraphBot A star ⭐ from you means a lot to us ! Telegram bot to upload media to telegra.ph Usage Deploy to Heroku Tap on above butt

Stark Bots 24 Dec 29, 2022
How did Covid affect businesses?

NYC_Business_Analysis How did Covid affect businesses? COVID's effect on NYC businesses We all know that businesses in NYC have been affected by COVID

AK 1 Jan 15, 2022
Passenger Car Unit (PCU) Calculator

This is a streamlit web application which can be used to calculate Passenger Car Unit (PCU) values for a selected road section.

Dineth Dhananjaya 1 Apr 26, 2022
Export transactions for an algorand wallet to a CSV file

algorand_txn_csv_exporter - (Algorand transaction CSV exporter) This script will export transactions for an algorand wallet to a CSV file. It is inten

TeneoPython01 5 Jun 19, 2022
Code and data for learning to search in local branching

Code and data for learning to search in local branching

Defeng Liu 7 Dec 06, 2022
This is a repository containing the backend and the frontend of a simple pokédex.

Pokémon This is a repository containing the backend and the frontend of a simple pokédex. This is a work in progress project! Project Structure 🗂 pok

André Rato 1 Nov 28, 2021
This tool don't used illegal ativity

ETHICALTOOL This tool for only educational purposes don't used illegal ativity @onlinehacking this tool for pkg update && pkg upgrade && pkg install g

Mrkarthick 4 Dec 23, 2021
Cash in on Expressed Barcode Tags (EBTs) from NGS Sequencing Data with Python

Cash in on Expressed Barcode Tags (EBTs) from NGS Sequencing Data with Python Cashier is a tool developed by Russell Durrett for the analysis and extr

3 Sep 11, 2022
Create rangebased on lists or values of the range itself. Range any type. Can you imagine?

funcao-allrange-for-python3 Create rangebased on lists or values of the range itself. Range any type. Can you imagine? WARNING!!! THIS MODULE DID NOT

farioso-fernando 1 Feb 09, 2022
Tools, guides, and resources for blockchain analysts to interface with data on the Ergo platform.

Ergo Intelligence Objective Provide a suite of easy-to-use toolkits, guides, and resources for blockchain analysts and data scientists to quickly unde

Chris 5 Mar 15, 2022
Logo DYS (Doküman Yönetim Sitemi) API Python Implementation

dys-connector Logo DYS (Dokuman Yonetim Sistemi) API Python Implementation Python Package: https://pypi.org/project/dys-connector Quick Start from dys

Logo Group 8 Mar 19, 2022
A powerful and user-friendly binary analysis platform!

angr angr is a platform-agnostic binary analysis framework. It is brought to you by the Computer Security Lab at UC Santa Barbara, SEFCOM at Arizona S

6.3k Jan 02, 2023
A set of decks and notebooks with exercises for use in a hands-on causal inference tutorial session

intro-to-causal-inference A introduction to causal inference using common tools from the python data stack Table of Contents Getting Started Install g

Roni Kobrosly 15 Dec 07, 2022